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Abstract
Distributed replication systems based on the replicated state machine model have become ubiquitous
as the foundation of modern database systems. To ensure availability in the presence of faults,
these systems must be able to dynamically replace failed nodes with healthy ones via dynamic
reconfiguration. MongoDB is a document oriented database with a distributed replication mechanism
derived from the Raft protocol. In this paper, we present MongoRaftReconfig, a novel dynamic
reconfiguration protocol for the MongoDB replication system. MongoRaftReconfig utilizes a logless
approach to managing configuration state and decouples the processing of configuration changes from
the main database operation log. The protocol’s design was influenced by engineering constraints faced
when attempting to redesign an unsafe, legacy reconfiguration mechanism that existed previously
in MongoDB. We provide a safety proof of MongoRaftReconfig, along with a formal specification
in TLA+. To our knowledge, this is the first published safety proof and formal specification of
a reconfiguration protocol for a Raft-based system. We also present results from model checking
the safety properties of MongoRaftReconfig on finite protocol instances. Finally, we discuss the
conceptual novelties of MongoRaftReconfig, how it can be understood as an optimized and generalized
version of the single server reconfiguration algorithm of Raft, and present an experimental evaluation
of how its optimizations can provide performance benefits for reconfigurations.

2012 ACM Subject Classification Information systems → Parallel and distributed DBMSs; Software
and its engineering → Software verification

Keywords and phrases Fault Tolerance, Dynamic Reconfiguration, State Machine Replication

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2021.26

Related Version Full Version: https://arxiv.org/abs/2102.11960 [28]

Supplementary Material Software (TLA+ specifications [26]): https://doi.org/10.5281/zenodo.
5715510

Funding This work has been partially supported by NSF award CNS-1801546.

Acknowledgements We would like to thank Tess Avitabile for her critical insights during the
development of the reconfiguration protocol and discovery of subtle bugs in early design proposals.
We would like to thank Judah Schvimer, A. Jesse Jiryu Davis, Pavi Vetriselvan, and Ali Mir for
offering helpful insights during the protocol design and implementation process. We would also like
to thank Shuai Mu for providing helpful comments on initial drafts of this paper.

© William Schultz, Siyuan Zhou, Ian Dardik, and Stavros Tripakis;
licensed under Creative Commons License CC-BY 4.0

25th International Conference on Principles of Distributed Systems (OPODIS 2021).
Editors: Quentin Bramas, Vincent Gramoli, and Alessia Milani; Article No. 26; pp. 26:1–26:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:schultz.w@northeastern.edu
mailto:siyuan.zhou@mongodb.com
mailto:dardik.i@northeastern.edu
mailto:s.tripakis@northeastern.edu
https://doi.org/10.4230/LIPIcs.OPODIS.2021.26
https://arxiv.org/abs/2102.11960
https://doi.org/10.5281/zenodo.5715510
https://doi.org/10.5281/zenodo.5715510
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


26:2 Logless Dynamic Reconfiguration

1 Introduction

Distributed replication systems based on the replicated state machine model [24] have become
ubiquitous as the foundation of modern, fault-tolerant data storage systems. In order for
these systems to ensure availability in the presence of faults, they must be able to dynamically
replace failed nodes with healthy ones, a process known as dynamic reconfiguration. The
protocols for building distributed replication systems have been well studied and implemented
in a variety of systems [4, 7, 9, 30]. Paxos [12] and, more recently, Raft [22], have served
as the logical basis for building provably correct distributed replication systems. Dynamic
reconfiguration, however, is an additionally challenging and subtle problem [1] that has
not been explored as extensively as the foundational consensus protocols underlying these
systems. Variants of Paxos have examined the problem of dynamic reconfiguration but
these reconfiguration techniques may require changes to a running system that impact
availability [14] or require the use of an external configuration master [15]. The Raft consensus
protocol, originally published in 2014, provided a dynamic reconfiguration algorithm in its
initial publication, but did not include a precise discussion of its correctness or include
a formal specification or proof. A critical safety bug [20] in one of its reconfiguration
protocols was found after initial publication, demonstrating that the design and verification
of reconfiguration protocols for these systems is a challenging task.

MongoDB [17] is a general purpose, document oriented database which implements
a distributed replication system [27] for providing high availability and fault tolerance.
MongoDB’s replication system uses a novel consensus protocol that derives from Raft [34].
Since its inception, the MongoDB replication system has provided a custom, legacy protocol
for dynamic reconfiguration of replica members that was not based on a published algorithm.
This legacy protocol managed configurations in a logless fashion i.e. each server only stored
its latest configuration. In addition, it decoupled reconfiguration processing from the main
database operation log. These features made for a simple and appealing protocol design,
and it was sufficient to provide basic reconfiguration functionality to clients. The legacy
protocol, however, was known to be unsafe in certain cases. In recent versions of MongoDB,
reconfiguration has become a more common operation, necessitating the need for a redesigned,
safe reconfiguration protocol with rigorous safety guarantees. From a system engineering
perspective, a primary goal was to keep design and implementation complexity low. Thus, it
was desirable that the new reconfiguration protocol minimize changes to the legacy protocol
to the extent possible. In this paper, we present MongoRaftReconfig, a novel dynamic
reconfiguration protocol that achieves the above design goals.

MongoRaftReconfig provides safe, dynamic reconfiguration, utilizes a logless approach
to managing configuration state, and decouples reconfiguration processing from the main
database operation log. Thus, it bears a high degree of architectural and conceptual
similarity to the legacy MongoDB protocol, satisfying our original design goal of minimizing
changes to the legacy protocol. We provide rigorous safety guarantees of MongoRaftReconfig,
including a proof of the protocol’s main safety properties along with a formal specification
in TLA+ [16], a specification language for describing distributed and concurrent systems.
To our knowledge, this is the first published safety proof and formal specification of a
reconfiguration protocol for a Raft-based system. We also verified the safety properties of
finite instances of MongoRaftReconfig using the TLC model checker [33], which provides
additional confidence in its correctness. Finally, we discuss the conceptual novelties of
MongoRaftReconfig, related to its logless design and decoupling of reconfiguration processing.
In particular, we discuss how it can be understood as an optimized and generalized variant of
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the single server Raft reconfiguration protocol. We also include a preliminary experimental
evaluation of how these optimizations can provide performance benefits over standard Raft,
by allowing reconfigurations to bypass the main operation log.

To summarize, in this paper we make the following contributions:
We present MongoRaftReconfig, a novel, logless dynamic reconfiguration protocol for the
MongoDB replication system.
We present a proof of MongoRaftReconfig’s key safety properties. To our knowledge, this
is the first published safety proof of a reconfiguration protocol for a Raft-based system.
We present a formal specification of MongoRaftReconfig in TLA+. To our knowledge, this
is the first published formal specification of a reconfiguration protocol for a Raft-based
system.
We present results of model checking the safety properties of MongoRaftReconfig on finite
protocol instances using the TLC model checker.
We discuss the conceptual novelties of MongoRaftReconfig, and how it can be understood
as an optimized and generalized variant of the single server Raft reconfiguration protocol.
We provide a preliminary experimental evaluation of MongoRaftReconfig’s performance
benefits, demonstrating how it improves upon reconfiguration in standard Raft.

2 Background

2.1 System Model
Throughout this paper, we consider a set of server processes Server = {s1, s2, ..., sn} that
communicate by sending messages. We assume an asynchronous network model in which
messages can be arbitrarily dropped or delayed. We assume servers can fail by stopping but
do not act maliciously i.e. we assume a “fail-stop” model with no Byzantine failures. We
define both a member set and a quorum as elements of 2Server . Member sets and quorums
have the same type but refer to different conceptual entities. For any member set m, and
any two non-empty member sets mi , mj , we define the following:

Quorums(m) ≜ {s ∈ 2m : |s| · 2 > |m|} (1)
QuorumsOverlap(mi , mj ) ≜ ∀qi ∈ Quorums(mi), qj ∈ Quorums(mj ) : qi ∩ qj ̸= ∅ (2)

where |S | denotes the cardinality of a set S . We refer to Definition 2 as the quorum overlap
condition.

2.2 Raft
Raft [19] is a consensus protocol for implementing a replicated log in a system of distributed
servers. It has been implemented in a variety of systems across the industry [21]. Throughout
this paper, we refer to the original Raft protocol as described and specified in [19] as standard
Raft.

The core Raft protocol implements a replicated state machine using a static set of servers.
In the protocol, time is divided into terms of arbitrary length, where terms are numbered
with consecutive integers. Each term has at most one leader, which is selected via an election
that occurs at the beginning of a term. To dynamically change the set of servers operating
the protocol, Raft includes two, alternate algorithms: single server membership change
and joint consensus. In this paper we are only concerned with single server membership
change. The single server change approach aims to simplify reconfiguration by allowing only
reconfigurations that add or remove a single server. Reconfiguration is accomplished by
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26:4 Logless Dynamic Reconfiguration

writing a special reconfiguration entry into the main Raft operation log that alters the local
configuration of a server. In this paper, when referring to reconfiguration in standard Raft,
we assume it to mean the single server change protocol.

2.3 Replication in MongoDB

MongoDB is a general purpose, document oriented database that stores data in JSON-like
objects. A MongoDB database consists of a set of collections, where a collection is a set
of unique documents. To provide high availability, MongoDB provides the ability to run a
database as a replica set, which is a set of MongoDB servers that act as a consensus group,
where each server maintains a logical copy of the database state.

MongoDB replica sets utilize a replication protocol that is derived from Raft, with
some extensions. We refer to MongoDB’s abstract replication protocol, without dynamic
reconfiguration, as MongoStaticRaft. This protocol can be viewed as a modified version of
standard Raft that satisfies the same underlying correctness properties. A more in depth
description of MongoStaticRaft is given in [34, 27], but we provide a high level overview here,
since the MongoRaftReconfig reconfiguration protocol is built on top of MongoStaticRaft.
In a replica set running MongoStaticRaft there exists a single primary server and a set of
secondary servers. As in standard Raft, there is a single primary elected per term. The
primary server accepts client writes and inserts them into an ordered operation log known as
the oplog. The oplog is a logical log where each entry contains information about how to apply
a single database operation. Each entry is assigned a monotonically increasing timestamp,
and these timestamps are unique and totally ordered within a server log. These log entries
are then replicated to secondaries which apply them in order leading to a consistent database
state on all servers. When the primary learns that enough servers have replicated a log entry
in its term, the primary will mark it as committed, guaranteeing that the entry is permanently
durable in the replica set. Clients of the replica set can issue writes with a specified write
concern level, which indicates the durability guarantee that must be satisfied before the write
can be acknowledged to the client. Providing a write concern level of majority ensures that
a write will not be acknowledged until it has been marked as committed in the replica set. A
key, high level safety requirement of the replication protocol is that if a write is acknowledged
as committed to a client, it should be durable in the replica set.

3 MongoRaftReconfig: A Logless Dynamic Reconfiguration Protocol

In this section we present the MongoRaftReconfig dynamic reconfiguration protocol. First,
we provide an overview and some intuition on the protocol design in Section 3.1. Section 3.2
provides a high level, informal description of the protocol along with a condensed pseu-
docode description in Algorithm 1. Sections 3.3 and 3.4 provide additional detail on the
mechanisms required for the protocol to operate safely, and the TLA+ formal specification
of MongoRaftReconfig is discussed briefly in Section 3.5.

The complete description of MongoRaftReconfig is left to the full version of the paper [28].
The pseudocode presented in Algorithm 1 describes the reconfiguration specific behaviors of
MongoRaftReconfig, which are the novel aspects of the protocol and the contributions of this
paper.
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3.1 Overview and Intuition
Dynamic reconfiguration allows the set of servers operating as part of a replica set to be
modified while maintaining the core safety guarantees of the replication protocol. Many
consensus based replication protocols [29, 14, 22] utilize the main operation log (the oplog,
in MongoDB) to manage configuration changes by writing special reconfiguration log entries.
The MongoRaftReconfig protocol instead decouples configuration updates from the main
operation log by managing the configuration state of a replica set in a separate, logless
replicated state machine, which we refer to as the config state machine. The config state
machine is maintained alongside the oplog, and manages the configuration state used by the
overall protocol.

In order to ensure safe reconfiguration, MongoRaftReconfig imposes specific restrictions
on how reconfiguration operations are allowed to update the configuration state of the replica
set. First, it imposes a quorum overlap condition on any reconfiguration from C to C ′, which
is an approach adopted from the Raft single server reconfiguration algorithm. This ensures
that all quorums of two adjacent configurations overlap with each other, and so can safely
operate concurrently. In order to allow the system to pass through many configurations over
time, though, MongoRaftReconfig imposes additional restrictions which address two essential
aspects required for safe dynamic reconfiguration: (1) deactivation of old configurations and
(2) state transfer from old configurations to new configurations. Essentially, it must ensure
that old configurations, which may not overlap with newer configurations, are appropriately
prevented from executing disruptive operations (e.g. electing a primary or committing
a write), and it must also ensure that relevant protocol state from old configurations is
properly transferred to newer configurations before they become active. The details of these
restrictions and their safety implications are discussed further in Section 3.3.

In the remainder of this section we give an overview of the behaviors of MongoRaftReconfig,
along with a pseudocode description of the protocol. We discuss its correctness in more
depth in Section 4.

3.2 High Level Protocol Behavior
At a high level, dynamic reconfiguration in MongoRaftReconfig consists of two main aspects:
(1) updating the current configuration and (2) propagating new configurations between
servers. Configurations also have an impact on election behavior which we discuss below, in
Section 3.4. Formally, a configuration is defined as a tuple (m, v , t), where m ∈ 2Server is a
member set, v ∈ N is a numeric configuration version, and t ∈ N is the numeric term of the
configuration. For convenience, we refer to the elements of a configuration tuple C = (m, v , t)
as, respectively, C .m, C .v and C .t . Each server of a replica set maintains a single, durable
configuration, and it is assumed that, initially, all nodes begin with a common configuration,
(minit , 1, 0), where minit ∈ (2Server \ ∅).

To update the current configuration of a replica set, a client issues a reconfiguration
command to a primary server with a new, desired configuration, C ′. Reconfigurations can only
be executed on primary servers, and they update the primary’s current local configuration C
to the specified configuration C ′. The version of the new configuration, C ′.v , must be greater
than the version of the primary’s current configuration, C .v , and the term of C ′ is set equal
to the current term of the primary processing the reconfiguration. After a reconfiguration
has occurred on a primary, the updated configuration needs to be communicated to other
servers in the replica set. This is achieved in a simple, gossip like manner. Secondaries receive
information about the configurations of other servers via periodic heartbeats. They need to
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26:6 Logless Dynamic Reconfiguration

Algorithm 1 Pseudocode description of MongoRaftReconfig reconfiguration specific behavior.

Definitions
C(i) ≜ (config[i ], configVersion[i ], configTerm[i ])
Ci > Cj ≜ (Ci .t > Cj .t) ∨ (Ci .t = Cj .t ∧ Ci .v > Cj .v)
Ci ≥ Cj ≜ (Ci > Cj ) ∨ ((Ci .v , Ci .t) = (Cj .v , Cj .t))
Q1(i) ≜ ∃Q ∈ Quorums(config[i ]) : ∀j ∈ Q : (C(j).v , C(j).t) = (C(i).v , C(i).t) ▷ Config Quorum Check
Q2(i) ≜ ∃Q ∈ Quorums(config[i ]) : ∀j ∈ Q : term[j ] = term[i ] ▷ Term Quorum Check
P1(i) ≜ ∃Q ∈ Quorums(config[i ]) : all entries committed in terms ≤ term[i ] are committed in Q

1: State and Initialization
2: Let minit ∈ 2Server \ ∅
3: ∀i ∈ Server :
4: term[i ] ∈ N, initially 0
5: state[i ] ∈ {Pri ., Sec.}, initially Secondary
6: config[i ] ∈ 2Server , initially minit
7: configVersion[i ] ∈ N, initially 1
8: configTerm[i ] ∈ N, initially 0
9:

10: Actions
11: action: Reconfig(i , mnew )
12: require state[i ] = Primary
13: require Q1(i) ∧Q2(i) ∧ P1(i)
14: require QuorumsOverlap(config[i ], mnew )
15: config[i ]← mnew
16: configVersion[i ]← configVersion[i ] + 1
17:
18: action: SendConfig(i , j )

19: require state[j ] = Secondary
20: require C(i) > C(j)
21: C(j) ← C(i)

22:
23: action: BecomeLeader(i , Q)
24: require Q ∈ Quorums(config[i ])
25: require i ∈ Q
26: require ∀v ∈ Q : C(i) ≥ C(v)
27: require ∀v ∈ Q : term[i ] + 1 > term[v ]
28: state[i ]← Primary
29: state[j ]← Secondary, ∀j ∈ (Q \ {i})
30: term[j ]← term[i ] + 1, ∀j ∈ Q
31: configTerm[i ]← term[i ] + 1
32:
33: action: UpdateTerms(i , j )
34: require term[i ] > term[j ]
35: state[j ]← Secondary
36: term[j ]← term[i ]

have some mechanism, however, for determining whether one configuration is newer than
another. This is achieved by totally ordering configurations by their (version, term) pair,
where term is compared first, followed by version. If configuration Cj compares as greater
than configuration Ci based on this ordering, we say that Cj is newer than Ci . A secondary
can update its configuration to any that is newer than its current configuration. If it learns
that another server has a newer configuration, it will fetch that server’s configuration, verify
that it is still newer than its own upon receipt, and install it locally.

The above provides a basic outline of how reconfigurations occur and how configurations
are propagated between servers in MongoRaftReconfig. The pseudocode given in Algorithm 1
gives a more abstract and precise description of these behaviors. Note that, in order for the
protocol to operate safely, there are several additional restrictions that are imposed on both
reconfigurations and elections, which we discuss in more detail below, in Sections 3.3 and 3.4.

3.3 Safety Restrictions on Reconfigurations
In MongoStaticRaft, which does not allow reconfiguration, the safety of the protocol de-
pends on the fact that the quorum overlap condition is satisfied for the member sets of
any two configurations. This holds since there is a single, uniform configuration that is
never modified. For any pair of arbitrary configurations, however, their member sets may
not satisfy this property. So, in order for MongoRaftReconfig to operate safely, extra re-
strictions are needed on how nodes are allowed to move between configurations. First, any
reconfiguration that moves from C to C ′ is required to satisfy the quorum overlap condition
i.e. QuorumsOverlap(C .m, C ′.m). This restriction is discussed in Raft’s approach to recon-
figuration [19], and is adopted by MongoRaftReconfig. Even if quorum overlap is ensured
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between any two adjacent configurations, it may not be ensured between all configurations
that the system passes through over time. So, there are additional preconditions that must
be satisfied before a primary server in term T can execute a reconfiguration out of its current
configuration C :

Q1. Config Quorum Check: There must be a quorum of servers in C .m that are currently
in configuration C .

Q2. Term Quorum Check: There must be a quorum of servers in C .m that are currently in
term T .

P1. Oplog Commitment: All oplog entries committed in terms ≤ T must be committed on
some quorum of servers in C .m.

The above preconditions are stated in Algorithm 1 as Q1(i), Q2(i), and P1(i), and they
collectively enforce two fundamental requirements needed for safe reconfiguration: deactivation
of old configurations and state transfer from old configurations to new configurations. Q1,
when coupled with the election restrictions discussed in Section 3.4, achieves deactivation by
ensuring that configurations earlier than C can no longer elect a primary. Q2 ensures that
term information from older configurations is correctly propagated to newer configurations,
while P1 ensures that previously committed oplog entries are properly transferred to the
current configuration, ensuring that any primary in a current or later configuration will
contain these entries.

3.4 Configurations and Elections

When a node runs for election in MongoStaticRaft, it must ensure its log is appropriately up
to date and that it can garner a quorum of votes in its term. In MongoRaftReconfig, there is
an additional restriction on voting behavior that depends on configuration ordering. If a
replica set server is a candidate for election in configuration Ci , then a prospective voter in
configuration Cj may only cast a vote for the candidate if Ci is newer than or equal to Cj .
Furthermore, when a node wins an election, it must update its current configuration with its
new term before it is allowed to execute subsequent reconfigurations. That is, if a node with
current configuration (m, v , t) wins election in term t ′, it will update its configuration to
(m, v , t ′) before allowing any reconfigurations to be processed. This behavior is necessary
to appropriately deactivate concurrent reconfigurations that may occur on primaries in a
different term. This configuration re-writing behavior is analogous to the write in Raft’s
corrected membership change protocol proposed in [20].

3.5 Formal Specification

The complete, formal description of MongoRaftReconfig is given in the TLA+ specification
in the supplementary materials [26]. Note that TLA+ does not impose an underlying system
or communication model (e.g. message passing, shared memory), which allows one to write
specifications at a wide range of abstraction levels. Our specifications are written at a
deliberately high level of abstraction, ignoring some lower level details of the protocol and
system model. In practice, we have found the abstraction level of our specifications most
useful for understanding and communicating the essential behaviors and safety characteristics
of the protocol, while also serving to make automated verification via model checking more
feasible, which is discussed further in Section 4.4.
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4 Correctness

In this section we present a brief outline of our safety proof for MongoRaftReconfig. We do
not address liveness properties in this work. The full proof is left to [28].

The key, high level safety property of MongoRaftReconfig that we establish in this paper
is LeaderCompleteness, which is a fundamental safety property of both standard Raft and
MongoStaticRaft, and is stated below as Theorem 2. This property states that if a log
entry has been committed in term T , then it must be present in the logs of all primary
servers in terms > T . Essentially, it ensures that writes committed by some primary will be
permanently durable in the replica set. Below we give a high level, intuitive outline of the
proof.

4.1 Overview
Conceptually, MongoRaftReconfig can be viewed as an extension of the MongoStaticRaft
replication protocol that allows for dynamic reconfiguration. MongoRaftReconfig, however,
violates the property that all quorums of any two configurations overlap, which MongoStati-
cRaft relies on for safety. It is therefore necessary to examine how MongoRaftReconfig operates
safely even though it cannot rely on the quorum overlap property. In MongoStaticRaft, there
are two key aspects of protocol behavior that depend on quorum overlap: (1) elections of
primary servers and (2) commitment of log entries. Elections must ensure that there is at
most one unique primary per term, referred to as the ElectionSafety property. Additionally,
if a log entry is committed in a given term, it must be present in the logs of all primary
servers in higher terms, referred to as the LeaderCompleteness property. Both of these safety
properties must be upheld in MongoRaftReconfig.

LeaderCompleteness is the essential, high level safety property that we must establish
for MongoRaftReconfig. ElectionSafety is a key, auxiliary lemma that is required in order to
show LeaderCompleteness. So, this guides the general structure of our proof. Section 4.2
presents an intuitive outline of the ElectionSafety proof, followed by a similar discussion of
LeaderCompleteness in Section 4.3. The full proofs are left to [28].

4.2 Election Safety
In MongoStaticRaft, if an election has occurred in term T it ensures that some quorum of
servers have terms ≥ T . This prevents any future candidate from being elected in term T ,
since the quorum required for any future election will contain at least one of these servers,
preventing a successful election in term T . This property, referred to as ElectionSafety, is
stated below as Lemma 1.

▶ Lemma 1 (Election Safety). For all s, t ∈ Server such that s ̸= t , it is not the case that
both s and t are primary and have the same term.

∀s, t ∈ Server :
(state[s] = Primary ∧ state[t ] = Primary ∧ term[s] = term[t ]) ⇒ (s = t)

In MongoRaftReconfig, ensuring that a quorum of nodes have terms ≥ T after an election in
term T is not sufficient to ensure that ElectionSafety holds, since there is no guarantee that
all quorums of future configurations will overlap with those of past configurations. To address
this, MongoRaftReconfig must appropriately deactivate past configurations before creating
new configurations. Conceptually, configurations in the protocol can be considered as either or
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active or deactivated, the former being any configuration that is not deactivated. Deactivated
configurations cannot elect a new leader or execute a reconfiguration. MongoRaftReconfig
ensures proper deactivation of configurations by upholding an invariant that the quorums of
all active configurations overlap with each other. In addition to deactivation of configurations,
MongoRaftReconfig must also ensure that term information from one configuration is properly
transferred to subsequent configurations, so that later configurations know about elections
that occurred in earlier configurations. For example, if an election occurred in term T in
configuration C , even if C is deactivated by the time C ′ is created, the protocol must also
ensure that C ′ is “aware” of the fact that an election in T occurred in C . MongoRaftReconfig
ensures this by upholding an additional invariant stating that the quorums of all active
configurations overlap with some server in term ≥ T , for any past election that occurred in
term T .

Collectively, the two above invariants are the essential properties for understanding how
the ElectionSafety property is upheld in MongoRaftReconfig. The formal statement of these
invariants and the complete proof is left to [28]. In the following section, we briefly discuss
the LeaderCompleteness property and its proof, which relies on the ElectionSafety property.

4.3 Leader Completeness
LeaderCompleteness is the key high level safety property of MongoRaftReconfig. It ensures
that if a log entry is committed in term T , then it is present in the logs of all leaders in
terms > T . Essentially, it ensures that committed log entries are durable in a replica set.
It is stated below as Theorem 2, where committed ∈ N × N refers to the set of committed
log entries as (index , term) pairs, and InLog(i , t , s) is a predicate determining whether a log
entry (i , t) is contained in the log of server s.

▶ Theorem 2 (Leader Completeness). If a log entry is committed in term T , then it is present
in the log of any leader in term T ′ > T .

∀s ∈ Server : ∀(cindex , cterm) ∈ committed :
(state[s] = Primary ∧ cterm < term[s]) ⇒ InLog(cindex , cterm, s) (3)

In MongoStaticRaft, LeaderCompleteness is ensured due to the overlap between quorums
used for commitment of a write and quorums used for the election of a primary. In
MongoRaftReconfig, this does not hold, so the protocol instead upholds a more general
invariant, stating that, for all committed entries E , the quorums of all active configurations
overlap with some server that contains E in its log. MongoRaftReconfig also ensures that
newer configurations appropriately disable commitment of log entries in older terms. We defer
the statement of these invariants and the complete proof of Theorem 2 and its supporting
lemmas to [28].

4.4 Model Checking
In addition to the safety proof outlined above, we used TLC [33], an explicit state model
checker for TLA+ specifications, to gain additional confidence in the safety of the protocol.
We consider it important to augment the human reasoning process for protocols like this
with some type of machine based verification, even if the verification is incomplete, since it
is easy for humans to make subtle errors in reasoning when considering distributed protocols
of this nature.
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We verified fixed, finite instances of MongoRaftReconfig to provide a sound guarantee of
protocol correctness for given parameters. MongoRaftReconfig is an infinite state protocol,
so verification via explicit state model checking is, necessarily, incomplete. That is, it does
not establish correctness of the protocol for an unbounded number of servers or system
parameters. It does, however, provide a strong initial level of confidence that the protocol is
safe. A goal for future work is to develop a complete, machine checked safety proof using the
TLA+ proof system [5].

4.4.1 Methodology and Results
Formally, MongoRaftReconfig behaves as an extension of MongoStaticRaft that allows for
dynamic reconfiguration. Thus, it can be viewed as a composition of two distinct subprotocols:
one for managing the oplog, and one for managing configuration state. The oplog is maintained
by MongoStaticRaft, and configurations are maintained by a protocol we refer to below
as MongoLoglessDynamicRaft, which implements the logless replicated state machine that
manages the configuration state of the replica set. Algorithm 1 summarizes the behaviors of
MongoLoglessDynamicRaft. This compositional approach to describing MongoRaftReconfig is
formalized in our TLA+ specification which can be found in the supplementary materials [26].
Our verification efforts centered on checking the two key safety properties discussed in the
above sections, ElectionSafety and LeaderCompleteness. We summarize the results below,
leaving the full details to [28].

Checking Leader Completeness. We were able to successfully verify the LeaderCompleteness
property on a finite instance of MongoRaftReconfig with 4 servers, logs of maximum length 2,
maximum configuration versions of 3, and maximum server terms of 3. That is, we manually
imposed a constraint preventing the model checker from exploring any states exceeding these
finite bounds. Model checking this instance generated approximately 345 million distinct
protocol states and took approximately 8 hours to complete with 20 TLC worker threads on
a 48-core, 2.30GHz Intel Xeon Gold 5118 CPU.

Checking Election Safety. As evidenced by the above metrics, it was difficult to scale
verification of the LeaderCompleteness property to much larger system parameters. So, to
provide additional confidence, we checked the ElectionSafety property on the MongoLogless-
DynamicRaft protocol in isolation, which allowed us to verify instances with significantly
larger parameters. Due to the compositional structure of MongoRaftReconfig, verifying that
the ElectionSafety property holds on MongoLoglessDynamicRaft is sufficient to ensure that
it holds in MongoRaftReconfig. Intuitively, the additional preconditions imposed by Mongo-
RaftReconfig only restrict the behaviors of MongoLoglessDynamicRaft, but do not augment
them. We formalize and prove this fact via a refinement based argument, whose details are
left to [28]. This allows us to assume our verification efforts for MongoLoglessDynamicRaft
hold in MongoRaftReconfig, providing stronger confidence in the correctness of the overall
protocol.

We successfully verified the ElectionSafety property on a finite instance of MongoLog-
lessDynamicRaft with 5 servers, maximum configuration versions of 4, and maximum terms
of 4. Model checking this instance generated approximately 812 million distinct states and
took around 19.5 hours to complete with 20 TLC worker threads on a 48-core, 2.30GHz Intel
Xeon Gold 5118 CPU. The ability to check these considerably larger parameter values in only
several extra hours of wall clock time demonstrates the effectiveness of this compositional
model checking approach, helping us mitigate state space explosion [6].
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5 Conceptual Insights

MongoRaftReconfig can be viewed as a generalization and optimization of the standard
Raft reconfiguration protocol. To explain the conceptual novelties of our protocol and
how it relates to standard Raft, we discuss below the two primary aspects of the protocol
which set it apart from Raft: (1) decoupling of the oplog and config state machine and (2)
logless optimization of the config state machine. These are covered in Sections 5.1 and 5.2,
respectively. Section 6 provides an experimental evaluation of how these novel aspects can
provide performance benefits for reconfiguration, by allowing reconfigurations to bypass the
main operation log in cases where it has become slow or stalled.

5.1 Decoupling Reconfigurations
In standard Raft, the main operation log is used for both normal operations and reconfigu-
ration operations. This coupling between logs has the benefit of providing a single, unified
data structure to manage system state, but it also imposes fundamental restrictions on
the operation of the two logs. Most importantly, in order for a write to commit in one
log, it must commit all previous writes in the other. For example, if a reconfiguration
log entry Cj has been written at log index j on primary s, and there is a sequence of
uncommitted log entries U = ⟨i , i + 1, ..., j − 1⟩ in the log of s , in order for a reconfiguration
from Cj to Ck to occur, all entries of U must become committed. This behavior, however,
is stronger than necessary for safety i.e. it is not strictly necessary to commit these log
entries before executing a reconfiguration. The only fundamental requirements are that
previously committed log entries are committed by the rules of the current configuration,
and that the current configuration has satisfied the necessary safety preconditions. Raft
achieves this goal implicitly, but more conservatively than necessary, by committing the
entry Cj and all entries behind it. This ensures that all previously committed log entries, in
addition to the uncommitted operations U , are now committed in Cj , but it is not strictly
necessary to pipeline a reconfiguration behind commitment of U . MongoRaftReconfig avoids
this by separating the oplog and config state machine and their rules for commitment and
reconfiguration, allowing reconfigurations to bypass the oplog if necessary. Section 6 examines
this aspect of the protocol experimentally.

5.2 Logless Optimization
Decoupling the config state machine from the main operation log allows for an optimization
that is enabled by the fact that reconfigurations are “update-only” operations on the replicated
state machine. This means that it is sufficient to store only the latest version of the replicated
state, since the latest version can be viewed as a “rolled-up” version of the entire (infinite) log.
This logless optimization allows the configuration state machine to avoid complexities related
to garbage collection of old log entries and it simplifies the mechanism for state propagation
between servers. Normally, log entries are replicated incrementally, either one at a time, or
in batches from one server to another. Additionally, servers may need to have an explicit
procedure for deleting (i.e. rolling back) log entries that will never become committed. In
the logless replicated state machine, all of these mechanisms can be combined into a single
conceptual action, that atomically transfers the entire log of server s to another server t , if
the log of s is newer, based on the index and term of its last entry. In MongoRaftReconfig,
this is implemented by the SendConfig action, which transfers configuration state from one
server to another.
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6 Experimental Evaluation

In a healthy replica set, it is possible that a failure event causes some subset of replica set
servers to degrade in performance, causing the main oplog replication channel to become
lagged or stall entirely. If this occurs on a majority of nodes, then the replica set will be
prevented from committing new writes until the performance degradation is resolved. For
example, consider a 3 node replica set consisting of nodes {n0, n1, n2}, where nodes n1 and
n2 suddenly become slow or stall replication. An operator or failure detection module may
want to reconfigure these nodes out of the set and add in two new, healthy nodes, n3 and
n4, so that the system can return to a healthy operational state. This requires a series of
two reconfigurations, one to add n3 and one to add n4. In standard Raft, this would require
the ability to commit at least one reconfiguration oplog entry with one of the degraded
nodes (n1 or n2). This prevents such a reconfiguration until the degradation is resolved.
In MongoRaftReconfig, reconfigurations bypass the oplog replication channel, committing
without the need to commit writes in the oplog. This allows MongoRaftReconfig to successfully
reconfigure the system in such a degraded state, restoring oplog write availability by removing
the failed nodes and adding in new, healthy nodes.

Note that if a replica set server experiences a period of degradation (e.g. a slow disk),
both the oplog and reconfiguration channels will be affected, which would seem to nullify
the benefits of decoupling the reconfiguration and oplog replication channels. In practice,
however, the operations handled by the oplog are likely orders of magnitude more resource
intensive than reconfigurations, which typically involve writing a negligible amount of data.
So, even on a degraded server, reconfigurations should be able to complete successfully when
more intensive oplog operations become prohibitively slow, since the resource requirements
of reconfigurations are extremely lightweight.

6.1 Experiment Setup and Operation
To demonstrate the benefits of MongoRaftReconfig in this type of scenario, we designed an
experiment to measure how quickly a replica set can reconfigure in new nodes to restore
majority write availability when it faces periodic phases of degradation. For comparison,
we implemented a simulated version of the Raft reconfiguration algorithm in MongoDB by
having reconfigurations write a no-op oplog entry and requiring it to become committed
before the reconfiguration can complete [25]. Our experiment initiates a 5 node replica set
with servers we refer to as {n0, n1, n2, n3, n4}. We run the server processes co-located on
a single Amazon EC2 t2.xlarge instance with 4 vCPU cores, 16GB memory, and a 100GB
EBS disk volume, running Ubuntu 20.04. Co-location of the server processes is acceptable
since the workload of the experiment does not saturate any resource (e.g. CPU, disk) of the
machine. The servers run MongoDB version v4.4-39f10d with a patch to fix a minor bug [18]
that prevents optimal configuration propagation speed in some cases.

Initially, {n0, n1, n2} are voting servers and {n3, n4} are non voting. In a MongoDB
replica set, a server can be assigned either 0 or 1 votes. A non-voting server has zero votes
and it does not contribute to a commit majority i.e. it is not considered as a member of the
consensus group. Our experiment has a single writer thread that continuously inserts small
documents into a collection with write concern majority, with a write concern timeout of
100 milliseconds. There is a concurrent fault injector thread that periodically simulates a
degradation of performance on two secondary nodes by temporarily pausing oplog replication
on those nodes. This thread alternates between steady periods and degraded periods of time,
starting out in steady mode, where all nodes are operating normally. It runs for 5 seconds in
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Figure 1 Latency of majority writes in the face of node degradation and reconfiguration to
recover. Red points indicate writes that timed out i.e. failed to commit. Orange horizontal bars
indicate intervals of time where system entered a degraded mode. Thin, vertical blue bars indicate
successful completion of reconfiguration events.

steady mode, then transitions to degraded mode for 2.5 seconds, before transitioning back to
steady mode and repeating this cycle. When the fault injector enters degraded mode, the
main test thread simulates a “fault detection” scenario (assuming some external module
detected the performance degradation) by sleeping for 500 milliseconds, and then starting a
series of reconfigurations to add two new, healthy secondaries and remove the two degraded
secondaries. Over the course of the experiment, which has a 1 minute duration, we measure
the latency of each operation executed by the writer thread. These latencies are depicted
in the graphs of Figure 1. Red points indicate writes that failed to commit i.e. that timed
out at 100 milliseconds. The successful completion of reconfigurations are depicted with
vertical blue bars. It can be seen how, when a period of degradation begins, the logless
reconfiguration protocol is able to complete a series of reconfigurations quickly to get the
system back to a healthy state, where writes are able to commit again and latencies drop
back to their normal levels. In the case of Raft reconfiguration, writes continue failing until
the period of degradation ends, since the reconfigurations to add in new healthy nodes cannot
complete.

7 Related Work

Dynamic reconfiguration in consensus based systems has been explored from a variety of
perspectives for Paxos based systems. In Lamport’s presentation of Paxos [13], he suggests
using a fixed parameter α such that the configuration for a consensus instance i is governed
by the configuration at instance i − α. This restricts the number of commands that can be
executed until the new configuration becomes committed, since the system cannot execute
instance i until it knows what configuration to use, potentially causing availability issues if
reconfigurations are slow to commit. Stoppable Paxos [14] was an alternative method later
proposed where a Paxos system can be reconfigured by stopping the current state machine
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and starting up a new instance of the state machine with a potentially different configuration.
This “stop-the-world” approach can hurt availability of the system while a reconfiguration
is being processed. Vertical Paxos allows a Paxos state machine to be reconfigured in the
middle of reaching agreement, but it assumes the existence of an external configuration
master [15]. In [4], the authors describe the Paxos implementation underlying Google’s
Chubby lock service, but do not include details of their approach to dynamic reconfiguration,
stating that “While group membership with the core Paxos algorithm is straightforward, the
exact details are non-trivial when we introduce Multi-Paxos...”. They remark that the details,
though minor, are “...subtle and beyond the scope of this paper”.

The Raft consensus protocol, published in 2014 by Ongaro and Ousterhout [22], presented
two methods for dynamic membership changes: single server membership change and joint
consensus. A correctness proof of the core Raft protocol, excluding dynamic reconfiguration,
was included in Ongaro’s PhD dissertation [19]. Formal verification of Raft’s linearizability
guarantees was later completed in Verdi [32], a framework for verifying distributed systems
in the Coq proof assistant [3], but formalization of dynamic reconfiguration was not included.
In 2015, after Raft’s initial publication, a safety bug in the single server reconfiguration
approach was found by Amos and Zhang [2], at the time PhD students working on a project
to formalize parts of Raft’s original reconfiguration algorithm. A fix was proposed shortly
after by Ongaro [20], but the project was never extended to include the fixed version of the
protocol. The Zab replication protocol, implemented in Apache Zookeeper [29], also includes
a dynamic reconfiguration approach for primary-backup clusters that is similar in nature to
Raft’s joint consensus approach.

The concept of decoupling reconfiguration from the main data replication channel has
previously appeared in other replication systems, but none that integrate with a Raft-based
system. RAMBO [8], an algorithm for implementing a distributed shared memory service, im-
plements a dynamic reconfiguration module that is loosely coupled with the main read-write
functionality. Additionally, Matchmaker Paxos [31] is a more recent approach for reconfigu-
ration in Paxos based protocols that adds dedicated nodes for managing reconfigurations,
which decouples reconfiguration from the main processing path, preventing performance
degradation during configuration changes. There has also been prior work on reconfiguration
using weaker models than consensus [10], and approaches to logless implementations of
Paxos based replicated state machine protocols [23], which bear conceptual similarities to
our logless protocol for managing configuration state. Similarly, [11] presents an approach to
asynchronous reconfiguration under a Byzantine fault model that avoids reaching consensus
on configurations by utilizing a lattice agreement abstraction.

8 Conclusions and Future Work

In this paper we presented MongoRaftReconfig, a novel, logless dynamic reconfiguration
protocol that improves upon and generalizes the single server reconfiguration protocol
of standard Raft by decoupling the main operation and reconfiguration logs. Although
MongoRaftReconfig was developed for and presented in the context of the MongoDB system,
the ideas and underlying protocol generalize to other Raft-based replication protocols that
require dynamic reconfiguration. Goals for future work include development of a machine
checked safety proof of the protocol’s correctness with help of the TLA+ proof system [5], in
addition to running more in depth experiments to evaluate how MongoRaftReconfig behaves
under more varied workloads.
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