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endive

An inductive invariant synthesis tool for e tve o
distributed protocols specified in TLA+. Candidate

- TLA+

Specification

O Only existing tool that infers inductive invariants for distributed protocols specified in TLA+.
O Competitive with other state of the art invariant inference tools on diverse benchmark.

O Uniquely solves industrial scale, Raft-based reconfiguration protocol.
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Safety Verification of Transition Systems

Let M = (Init, Next) be a transition system.

To verify that a predicate Safe is an invariant of M, find an
inductive invariant, Ind, satisfying

Init = Ind (Initiation)
Ind A Next = Ind’ (consecution)
Ind = Safe

Reachable
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Incremental Inductive Invariant Inference

Standard view of inductive invariant inference (e.g. IC3/PDR): an incremental lemma
synthesis problem

Ind = Safe
AL,
AL, L
' emma
Invariants
Reachable
AL,

-

( Note that L, ..., L, are, individually, invariants (not necessarily inductive). )
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Lemma Invariant Generation - —

« Syntax guided, sampling based approach
. TLA+ specification M = (Init, Next) finite instance size (“small scope hypothesis”)

. Grammar G
. Randomly sample candidates generated by GG

. Check candidates exhaustively on M with TLC model checker

(seed) ::= locked[s] | s € held[c] | held[c] = Atomic predicates
(quant) ::= Vs € Server : Vc € Client Quantifier template

(expr) ::= (seed) | = (expr) | (expr) V (expr)

(pred) ::= (quant) : (expr)

Example invariant grammar for lockserver.
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Generation

—
- I —

Standard approach is to find lemmas by generalizing from
individual counterexamples to induction (CTIs)

O k-step CTlI for Safe

Safe —Safe
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« Compared our tool, endive, against 4 other state of the art invariant inference tools

« IC3PO [1], fol-ic3 [2], SWISS [3], DistAl [4]
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[3] Travis Hance, Marijn Heule, Ruben Martins, Bryan Parno, Finding Invariants of Distributed Systems: It's a Small (Enough) World After All. NSDI 2027: 115-131
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« 29 concurrent/distributed protocols of varying complexity (e.g. 2PC, simple consensus)
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Solved Benchmarks

endive able to solve 26 / 30 of
the benchmarks successftully.

Protocol endive IC3PO fol-ic3 SWISS DistAl
1 tla-consensus
2 tla-tcommit
3 i4-lock-server X
4 ex-quorum-leader-election
5 pyv-toy-consensus-forall X
6 tla-simple X X
7 ex-lockserv-automaton X
8 tla-simpleregular X
9 pyv-sharded-kv
10 pyv-lockserv
11 tla-twophase
12 i4-learning-switch X X X
13 ex-simple-decentralized-lock
14 i4-two-phase-commit
15 pyv-consensus-wo-decide X
16 pyv-consensus-forall X
17 pyv-learning-switch X X
18 i4-chord-ring-maintenance X X X X
19 pyv-sharded-kv-no-lost-keys X
20 ex-naive-consensus X
21 pyv-client-server-ae X
22 ex-simple-election X
23 pyv-toy-consensus-epr X
24 ex-toy-consensus X
25 pyv-client-server-db-ae X X
26 pyv-hybrid-reliable-broadcast X X X
27 pyv-firewall X
28 ex-majorityset-leader-election X X
29 pyV-consensus-epr X
30 midr X X X X
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Conclusion

O First technique for inferring inductive invariants for distributed protocols specified in TLA+.
O Competitive with other state of the art invariant inference tools.

O Uniquely solves industrial scale, Raft-based reconfiguration protocol.

Simple, greedy approach works surprisingly well for this class of protocols.

Try out endive:

https://github.com/will62794/endive
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Ind=L/ A...AL,

We can trivially decompose into (k - n) subgoals
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Evaluation
TLAPS Proof Burden

Proving consecution typically  Ind A Next = Ind’
most burdensome.

If we have Next 2 T,V ..VT

Ind=L A...\NL,

We can trivially decompose into (k - n) subgoals

(Ind AT, = L)) (Ind AT, > L))

(IndANT;, = L)) (Ind AT, = L))

Proof burden metric: % of (k - n) subgoals that required

some manual proof effort.
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