
Northeastern University*, Carnegie Mellon University†

Plain and Simple Inductive Invariant Inference for
Distributed Protocols in TLA+
William Schultz*, Ian Dardik†, Stavros Tripakis*

FMCAD 2022

Designing Distributed Systems

2

Designing Distributed Systems

• Distributed systems found in all modern cloud, data storage systems

2

Designing Distributed Systems

• Distributed systems found in all modern cloud, data storage systems

• Underlying protocols are difficult to get right, error-prone [1]

[1] List of bugs found in distributed protocols: https://github.com/dranov/protocol-bugs-list
2

Designing Distributed Systems

• Distributed systems found in all modern cloud, data storage systems

• Underlying protocols are difficult to get right, error-prone [1]

[Ongaro2015]

[1] List of bugs found in distributed protocols: https://github.com/dranov/protocol-bugs-list
2

Designing Distributed Systems

• Distributed systems found in all modern cloud, data storage systems

• Underlying protocols are difficult to get right, error-prone [1]

[Sutra2019]

[Ongaro2015]

[1] List of bugs found in distributed protocols: https://github.com/dranov/protocol-bugs-list
2

How to verify real world distributed protocols?

3

4

Distributed Protocol Verification

[1] Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and Sharon Shoham. 2016. Ivy: safety verification by interactive generalization. SIGPLAN Not. 51, 6 (June 2016), 614–630.
https://doi.org/10.1145/2980983.2908118

[2] https://github.com/wilcoxjay/mypyvy

[3] Leslie Lamport. 2002. Specifying Systems: The TLA+ Language and Tools for Hardware and Software Engineers. Addison-Wesley Longman Publishing Co., Inc., USA.

[4] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, and Michael Deardeuff. 2015. How Amazon web services uses formal methods. Commun. ACM 58, 4 (April
2015), 66–73. https://doi.org/10.1145/2699417

https://doi.org/10.1145/2980983.2908118

4

• Bounded verification e.g. explicit state, bounded model checking may suffice for initial design
verification.

Distributed Protocol Verification

[1] Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and Sharon Shoham. 2016. Ivy: safety verification by interactive generalization. SIGPLAN Not. 51, 6 (June 2016), 614–630.
https://doi.org/10.1145/2980983.2908118

[2] https://github.com/wilcoxjay/mypyvy

[3] Leslie Lamport. 2002. Specifying Systems: The TLA+ Language and Tools for Hardware and Software Engineers. Addison-Wesley Longman Publishing Co., Inc., USA.

[4] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, and Michael Deardeuff. 2015. How Amazon web services uses formal methods. Commun. ACM 58, 4 (April
2015), 66–73. https://doi.org/10.1145/2699417

https://doi.org/10.1145/2980983.2908118

4

• Bounded verification e.g. explicit state, bounded model checking may suffice for initial design
verification.

• Unbounded safety verification requires development of inductive invariant.

Distributed Protocol Verification

[1] Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and Sharon Shoham. 2016. Ivy: safety verification by interactive generalization. SIGPLAN Not. 51, 6 (June 2016), 614–630.
https://doi.org/10.1145/2980983.2908118

[2] https://github.com/wilcoxjay/mypyvy

[3] Leslie Lamport. 2002. Specifying Systems: The TLA+ Language and Tools for Hardware and Software Engineers. Addison-Wesley Longman Publishing Co., Inc., USA.

[4] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, and Michael Deardeuff. 2015. How Amazon web services uses formal methods. Commun. ACM 58, 4 (April
2015), 66–73. https://doi.org/10.1145/2699417

https://doi.org/10.1145/2980983.2908118

4

• Bounded verification e.g. explicit state, bounded model checking may suffice for initial design
verification.

• Unbounded safety verification requires development of inductive invariant.

• Finding inductive invariants manually is difficult.

Distributed Protocol Verification

[1] Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and Sharon Shoham. 2016. Ivy: safety verification by interactive generalization. SIGPLAN Not. 51, 6 (June 2016), 614–630.
https://doi.org/10.1145/2980983.2908118

[2] https://github.com/wilcoxjay/mypyvy

[3] Leslie Lamport. 2002. Specifying Systems: The TLA+ Language and Tools for Hardware and Software Engineers. Addison-Wesley Longman Publishing Co., Inc., USA.

[4] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, and Michael Deardeuff. 2015. How Amazon web services uses formal methods. Commun. ACM 58, 4 (April
2015), 66–73. https://doi.org/10.1145/2699417

https://doi.org/10.1145/2980983.2908118

4

• Bounded verification e.g. explicit state, bounded model checking may suffice for initial design
verification.

• Unbounded safety verification requires development of inductive invariant.

• Finding inductive invariants manually is difficult.

• Tools for inductive invariant inference have been developed for Ivy [1], mypyvy [2], etc.

Distributed Protocol Verification

[1] Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and Sharon Shoham. 2016. Ivy: safety verification by interactive generalization. SIGPLAN Not. 51, 6 (June 2016), 614–630.
https://doi.org/10.1145/2980983.2908118

[2] https://github.com/wilcoxjay/mypyvy

[3] Leslie Lamport. 2002. Specifying Systems: The TLA+ Language and Tools for Hardware and Software Engineers. Addison-Wesley Longman Publishing Co., Inc., USA.

[4] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, and Michael Deardeuff. 2015. How Amazon web services uses formal methods. Commun. ACM 58, 4 (April
2015), 66–73. https://doi.org/10.1145/2699417

https://doi.org/10.1145/2980983.2908118

4

• Bounded verification e.g. explicit state, bounded model checking may suffice for initial design
verification.

• Unbounded safety verification requires development of inductive invariant.

• Finding inductive invariants manually is difficult.

• Tools for inductive invariant inference have been developed for Ivy [1], mypyvy [2], etc.

• No existing approaches for TLA+ [3], a specification language used widely in industry [4].

Distributed Protocol Verification

[1] Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and Sharon Shoham. 2016. Ivy: safety verification by interactive generalization. SIGPLAN Not. 51, 6 (June 2016), 614–630.
https://doi.org/10.1145/2980983.2908118

[2] https://github.com/wilcoxjay/mypyvy

[3] Leslie Lamport. 2002. Specifying Systems: The TLA+ Language and Tools for Hardware and Software Engineers. Addison-Wesley Longman Publishing Co., Inc., USA.

[4] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, and Michael Deardeuff. 2015. How Amazon web services uses formal methods. Commun. ACM 58, 4 (April
2015), 66–73. https://doi.org/10.1145/2699417

https://doi.org/10.1145/2980983.2908118

5

endive
An inductive invariant synthesis tool for
distributed protocols specified in TLA+.

Our Contributions

TLAPS

5

TLA+
Specification Inductive Invariant

Candidate

endive
An inductive invariant synthesis tool for
distributed protocols specified in TLA+.

TLC ⚙

Our Contributions

Only existing tool that infers inductive invariants for distributed protocols specified in TLA+.

Competitive with other state of the art invariant inference tools on diverse benchmark.

Uniquely solves industrial scale, Raft-based reconfiguration protocol.

TLAPS

5

TLA+
Specification Inductive Invariant

Candidate

endive
An inductive invariant synthesis tool for
distributed protocols specified in TLA+.

TLC ⚙

Our Contributions

6

Outline

Preliminaries: Safety Verification

Our Approach

Evaluation

Conclusion

7

Outline

Preliminaries: Safety Verification

Our Approach

Evaluation

Conclusion

Safety Verification of Transition Systems

Let be a transition system.M = (Init, Next)

8

Ind

Safety Verification of Transition Systems

Let be a transition system.M = (Init, Next)

Init ⇒ Ind (initiation)
Ind ∧ Next ⇒ Ind′ (consecution)
Ind ⇒ Safe

Safe

Reachable

8

Init

To verify that a predicate is an invariant of , find an
inductive invariant, , satisfying

Safe M
Ind

Safe

Incremental Inductive Invariant Inference

Standard view of inductive invariant inference (e.g. IC3/PDR): an incremental lemma
synthesis problem

Reachable

9

Safe

Incremental Inductive Invariant Inference

Standard view of inductive invariant inference (e.g. IC3/PDR): an incremental lemma
synthesis problem

Ind ≜ Safe

Reachable

9

SafeL1

Incremental Inductive Invariant Inference

Standard view of inductive invariant inference (e.g. IC3/PDR): an incremental lemma
synthesis problem

Ind ≜ Safe
∧ L1

Reachable

9

SafeL1 L2

Incremental Inductive Invariant Inference

Standard view of inductive invariant inference (e.g. IC3/PDR): an incremental lemma
synthesis problem

Ind ≜ Safe
∧ L1
∧ L2

Reachable

9

SafeL1 L2

Incremental Inductive Invariant Inference

Standard view of inductive invariant inference (e.g. IC3/PDR): an incremental lemma
synthesis problem

Ind ≜ Safe
∧ L1

∧ Ln

⋮
∧ L2

Ind

Reachable

9

SafeL1 L2

Incremental Inductive Invariant Inference

Standard view of inductive invariant inference (e.g. IC3/PDR): an incremental lemma
synthesis problem

Ind ≜ Safe

Lemma
Invariants

∧ L1

∧ Ln

⋮
∧ L2

Ind

Reachable

9

Note that are, individually, invariants (not necessarily inductive).L1, …, Ln

10

Outline

Preliminaries: Safety Verification

Our Approach

Evaluation

Conclusion

Our Approach

11

Our Approach

11

Our overall inductive invariant inference technique consists of 2 components:

1. Lemma Invariant Generation: Use (plain) invariant synthesis engine to generate candidate
lemma invariants.

2. Lemma Invariant Selection: Select lemma invariants to greedily eliminate sets of
counterexamples to induction (CTIs).

Our Approach

11

Invs

Ind ≜ Safe
∧ L1
⋮
∧ Li

I2

I1

I8

I4

Our overall inductive invariant inference technique consists of 2 components:

1. Lemma Invariant Generation: Use (plain) invariant synthesis engine to generate candidate
lemma invariants.

2. Lemma Invariant Selection: Select lemma invariants to greedily eliminate sets of
counterexamples to induction (CTIs).

Li ∈ Invs(1) Lemma Invariant
Generator

(2) Lemma Invariant
Selection

Lemma Invariant Generation

12

Invs(1) Lemma Invariant
Generation

(2) Lemma Invariant
Selection

Lemma Invariant Generation

• Syntax guided, sampling based approach

• TLA+ specification finite instance size (“small scope hypothesis”)

• Grammar

M = (Init, Next)

G

12

Invs(1) Lemma Invariant
Generation

(2) Lemma Invariant
Selection

Lemma Invariant Generation

• Syntax guided, sampling based approach

• TLA+ specification finite instance size (“small scope hypothesis”)

• Grammar

M = (Init, Next)

G

• Randomly sample candidates generated by G

12

Invs(1) Lemma Invariant
Generation

(2) Lemma Invariant
Selection

Lemma Invariant Generation

• Syntax guided, sampling based approach

• TLA+ specification finite instance size (“small scope hypothesis”)

• Grammar

M = (Init, Next)

G

• Randomly sample candidates generated by G

• Check candidates exhaustively on with TLC model checkerM

12

Invs(1) Lemma Invariant
Generation

(2) Lemma Invariant
Selection

Lemma Invariant Generation

• Syntax guided, sampling based approach

• TLA+ specification finite instance size (“small scope hypothesis”)

• Grammar

M = (Init, Next)

G

• Randomly sample candidates generated by G

• Check candidates exhaustively on with TLC model checkerM

12

Invs(1) Lemma Invariant
Generation

(2) Lemma Invariant
Selection

Example invariant grammar for lockserver.

Lemma Invariant Generation

• Syntax guided, sampling based approach

• TLA+ specification finite instance size (“small scope hypothesis”)

• Grammar

M = (Init, Next)

G

• Randomly sample candidates generated by G

• Check candidates exhaustively on with TLC model checkerM

12

Invs(1) Lemma Invariant
Generation

(2) Lemma Invariant
Selection

Example invariant grammar for lockserver.

Atomic predicates
Quantifier template

Lemma Invariant Selection

13

Invs(1) Lemma Invariant
Generation

(2) Lemma Invariant
Selection

Lemma Invariant Selection

Standard approach is to find lemmas by generalizing from
individual counterexamples to induction (CTIs)

13

Safe
k-step CTI for Safe

¬Safe

Invs(1) Lemma Invariant
Generation

(2) Lemma Invariant
Selection

Lemma Invariant Selection

14

Safe

Reachable

k-step CTI for Safe

Lemma Invariant Selection

14

Safe

Reachable

k-step CTI for SafeOur approach takes a data-driven view,
with goals of learning concise invariants

Lemma Invariant Selection

14

Safe

Reachable

k-step CTI for Safe

Generate many CTIs, then choose next
lemma greedily i.e. one that eliminates
greatest number of remaining CTIs.

Our approach takes a data-driven view,
with goals of learning concise invariants

Lemma Invariant Selection

14

Safe

L 1

Reachable

k-step CTI for Safe

Generate many CTIs, then choose next
lemma greedily i.e. one that eliminates
greatest number of remaining CTIs.

Our approach takes a data-driven view,
with goals of learning concise invariants

Lemma Invariant Selection

14

Safe

L 1

L
2

Reachable

k-step CTI for Safe

Generate many CTIs, then choose next
lemma greedily i.e. one that eliminates
greatest number of remaining CTIs.

Our approach takes a data-driven view,
with goals of learning concise invariants

15

Outline

Preliminaries: Safety Verification

Our Approach

Evaluation

Conclusion

Evaluation

16

Evaluation

• Compared our tool, endive, against 4 other state of the art invariant inference tools

• IC3PO [1], fol-ic3 [2], SWISS [3], DistAI [4]

16

[1] Goel, Aman & Sakallah, Karem. (2021). On Symmetry and Quantification: A New Approach to Verify Distributed Protocols. 10.1007/978-3-030-76384-8_9.

[2] Jason R. Koenig, et al. 2020. First-order quantified separators. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI 2020). Association for Computing Machinery, New York, NY, USA, 703–717. https://doi.org/10.1145/3385412.3386018

[3] Travis Hance, Marijn Heule, Ruben Martins, Bryan Parno, Finding Invariants of Distributed Systems: It's a Small (Enough) World After All. NSDI 2021: 115-131

[4] Jianan Yao, Runzhou Tao, et al. DistAI: Data-Driven Automated Invariant Learning for Distributed Protocols. OSDI 2021: 485-501

Evaluation

• Compared our tool, endive, against 4 other state of the art invariant inference tools

• IC3PO [1], fol-ic3 [2], SWISS [3], DistAI [4]

• Other tools accept Ivy/mypyvy so translation to TLA+ was necessary.

16

[1] Goel, Aman & Sakallah, Karem. (2021). On Symmetry and Quantification: A New Approach to Verify Distributed Protocols. 10.1007/978-3-030-76384-8_9.

[2] Jason R. Koenig, et al. 2020. First-order quantified separators. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI 2020). Association for Computing Machinery, New York, NY, USA, 703–717. https://doi.org/10.1145/3385412.3386018

[3] Travis Hance, Marijn Heule, Ruben Martins, Bryan Parno, Finding Invariants of Distributed Systems: It's a Small (Enough) World After All. NSDI 2021: 115-131

[4] Jianan Yao, Runzhou Tao, et al. DistAI: Data-Driven Automated Invariant Learning for Distributed Protocols. OSDI 2021: 485-501

Evaluation

• Compared our tool, endive, against 4 other state of the art invariant inference tools

• IC3PO [1], fol-ic3 [2], SWISS [3], DistAI [4]

• Other tools accept Ivy/mypyvy so translation to TLA+ was necessary.

• Benchmark consists of

• 29 concurrent/distributed protocols of varying complexity (e.g. 2PC, simple consensus)

• 1 industrial scale Raft-based reconfiguration protocol.

16

[1] Goel, Aman & Sakallah, Karem. (2021). On Symmetry and Quantification: A New Approach to Verify Distributed Protocols. 10.1007/978-3-030-76384-8_9.

[2] Jason R. Koenig, et al. 2020. First-order quantified separators. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI 2020). Association for Computing Machinery, New York, NY, USA, 703–717. https://doi.org/10.1145/3385412.3386018

[3] Travis Hance, Marijn Heule, Ruben Martins, Bryan Parno, Finding Invariants of Distributed Systems: It's a Small (Enough) World After All. NSDI 2021: 115-131

[4] Jianan Yao, Runzhou Tao, et al. DistAI: Data-Driven Automated Invariant Learning for Distributed Protocols. OSDI 2021: 485-501

Evaluation

17

Protocol endive IC3PO fol-ic3 SWISS DistAI

1 tla-consensus ✅ ✅ ✅ ✅ ✅

2 tla-tcommit ✅ ✅ ✅ ✅ ✅

3 i4-lock-server ✅ ✅ ✅ ✅ ❌

4 ex-quorum-leader-election ✅ ✅ ✅ ✅ ✅

5 pyv-toy-consensus-forall ✅ ✅ ✅ ✅ ❌

6 tla-simple ✅ ✅ ❌ ✅ ❌

7 ex-lockserv-automaton ✅ ✅ ✅ ❌ ✅

8 tla-simpleregular ✅ ✅ ✅ ✅ ❌

9 pyv-sharded-kv ✅ ✅ ✅ ✅ ✅

10 pyv-lockserv ✅ ✅ ✅ ✅ ✅

11 tla-twophase ✅ ✅ ✅ ✅ ✅

12 i4-learning-switch ❌ ✅ ❌ ❌ ✅

13 ex-simple-decentralized-lock ✅ ✅ ✅ ✅ ✅

14 i4-two-phase-commit ✅ ✅ ✅ ✅ ✅

15 pyv-consensus-wo-decide ✅ ✅ ✅ ✅ ❌

16 pyv-consensus-forall ✅ ✅ ✅ ✅ ❌

17 pyv-learning-switch ❌ ✅ ❌ ✅ ✅

18 i4-chord-ring-maintenance ❌ ✅ ❌ ❌ ❌

19 pyv-sharded-kv-no-lost-keys ✅ ✅ ✅ ✅ ❌

20 ex-naive-consensus ✅ ✅ ✅ ✅ ❌

21 pyv-client-server-ae ✅ ✅ ✅ ✅ ❌

22 ex-simple-election ✅ ✅ ✅ ✅ ❌

23 pyv-toy-consensus-epr ✅ ✅ ✅ ✅ ❌

24 ex-toy-consensus ✅ ✅ ✅ ✅ ❌

25 pyv-client-server-db-ae ✅ ✅ ❌ ✅ ❌

26 pyv-hybrid-reliable-broadcast ❌ ✅ ✅ ❌ ❌

27 pyv-firewall ✅ ✅ ✅ ✅ ❌

28 ex-majorityset-leader-election ✅ ✅ ❌ ✅ ❌

29 pyv-consensus-epr ✅ ✅ ✅ ✅ ❌

30 mldr ✅ ❌ ❌ ❌ ❌

endive able to solve 26 / 30 of
the benchmarks successfully.

Solved Benchmarks

Evaluation

17

Protocol endive IC3PO fol-ic3 SWISS DistAI

1 tla-consensus ✅ ✅ ✅ ✅ ✅

2 tla-tcommit ✅ ✅ ✅ ✅ ✅

3 i4-lock-server ✅ ✅ ✅ ✅ ❌

4 ex-quorum-leader-election ✅ ✅ ✅ ✅ ✅

5 pyv-toy-consensus-forall ✅ ✅ ✅ ✅ ❌

6 tla-simple ✅ ✅ ❌ ✅ ❌

7 ex-lockserv-automaton ✅ ✅ ✅ ❌ ✅

8 tla-simpleregular ✅ ✅ ✅ ✅ ❌

9 pyv-sharded-kv ✅ ✅ ✅ ✅ ✅

10 pyv-lockserv ✅ ✅ ✅ ✅ ✅

11 tla-twophase ✅ ✅ ✅ ✅ ✅

12 i4-learning-switch ❌ ✅ ❌ ❌ ✅

13 ex-simple-decentralized-lock ✅ ✅ ✅ ✅ ✅

14 i4-two-phase-commit ✅ ✅ ✅ ✅ ✅

15 pyv-consensus-wo-decide ✅ ✅ ✅ ✅ ❌

16 pyv-consensus-forall ✅ ✅ ✅ ✅ ❌

17 pyv-learning-switch ❌ ✅ ❌ ✅ ✅

18 i4-chord-ring-maintenance ❌ ✅ ❌ ❌ ❌

19 pyv-sharded-kv-no-lost-keys ✅ ✅ ✅ ✅ ❌

20 ex-naive-consensus ✅ ✅ ✅ ✅ ❌

21 pyv-client-server-ae ✅ ✅ ✅ ✅ ❌

22 ex-simple-election ✅ ✅ ✅ ✅ ❌

23 pyv-toy-consensus-epr ✅ ✅ ✅ ✅ ❌

24 ex-toy-consensus ✅ ✅ ✅ ✅ ❌

25 pyv-client-server-db-ae ✅ ✅ ❌ ✅ ❌

26 pyv-hybrid-reliable-broadcast ❌ ✅ ✅ ❌ ❌

27 pyv-firewall ✅ ✅ ✅ ✅ ❌

28 ex-majorityset-leader-election ✅ ✅ ❌ ✅ ❌

29 pyv-consensus-epr ✅ ✅ ✅ ✅ ❌

30 mldr ✅ ❌ ❌ ❌ ❌

endive able to solve 26 / 30 of
the benchmarks successfully.

Uniquely solved mldr, an
industrial scale Raft-based
reconfiguration protocol.

Solved Benchmarks

Evaluation

18

Ind ≜ Safe ∧ L1 ∧ … ∧ Ln

size measured as (n + 1)

Relative Invariant Size Comparison

Evaluation

18

ex-simple-decentralized-lock

tla-consensus

tla-tcommit

i4-lock-server

ex-quorum-leader-election

pyv-toy-consensus-forall

tla-simple

ex-lockserv-automaton

tla-simpleregular

pyv-sharded-kv

pyv-lockserv

tla-twophase

Relative Invariant Size
(Normalized)

0 0.25 0.5 0.75 1

endive
ic3po
fol-ic3
SWISS
DistAI

Ind ≜ Safe ∧ L1 ∧ … ∧ Ln

size measured as (n + 1)

Relative Invariant Size Comparison
i4-two-phase-commit

pyv-consensus-wo-decide

pyv-consensus-forall

pyv-sharded-kv-no-lost-keys

ex-naive-consensus

pyv-client-server-ae

ex-simple-election

pyv-toy-consensus-epr

ex-toy-consensus

pyv-client-server-db-ae

pyv-firewall

ex-majorityset-leader-election

pyv-consensus-epr

Relative Invariant Size
(Normalized)

0 0.25 0.5 0.75 1

Conclusion

19

Conclusion

First technique for inferring inductive invariants for distributed protocols specified in TLA+.

19

Conclusion

First technique for inferring inductive invariants for distributed protocols specified in TLA+.

Competitive with other state of the art invariant inference tools.

19

Conclusion

First technique for inferring inductive invariants for distributed protocols specified in TLA+.

Competitive with other state of the art invariant inference tools.

Uniquely solves industrial scale, Raft-based reconfiguration protocol.

19

Conclusion

First technique for inferring inductive invariants for distributed protocols specified in TLA+.

Competitive with other state of the art invariant inference tools.

Uniquely solves industrial scale, Raft-based reconfiguration protocol.

19

Simple, greedy approach works surprisingly well for this class of protocols.

Conclusion

First technique for inferring inductive invariants for distributed protocols specified in TLA+.

Competitive with other state of the art invariant inference tools.

Uniquely solves industrial scale, Raft-based reconfiguration protocol.

19

Simple, greedy approach works surprisingly well for this class of protocols.

Try out endive:
https://github.com/will62794/endive

https://github.com/will62794/endive

20

Evaluation
TLAPS Proof Burden

20

Ind ∧ Next ⇒ Ind′ Proving consecution typically
most burdensome.

Evaluation
TLAPS Proof Burden

20

Ind ∧ Next ⇒ Ind′ Proving consecution typically
most burdensome.

If we have Next ≜ T1 ∨ … ∨ Tk

Ind ≜ L1 ∧ … ∧ Ln

Evaluation
TLAPS Proof Burden

20

Ind ∧ Next ⇒ Ind′ Proving consecution typically
most burdensome.

If we have Next ≜ T1 ∨ … ∨ Tk

Ind ≜ L1 ∧ … ∧ Ln

We can trivially decompose into subgoals(k ⋅ n)

(Ind ∧ T1 ⇒ L′ 1) … (Ind ∧ Tk ⇒ L′ 1)
⋮

(Ind ∧ T1 ⇒ L′ n) … (Ind ∧ Tk ⇒ L′ n)

Evaluation
TLAPS Proof Burden

20

tla-consensus
tla-tcommit

i4-lock-server
ex-quorum-leader-election

pyv-toy-consensus-forall
tla-simple

ex-lockserv-automaton
tla-simpleregular
pyv-sharded-kv

pyv-lockserv
tla-twophase

ex-simple-decentralized-lock
i4-two-phase-commit

pyv-consensus-wo-decide
pyv-consensus-forall

pyv-sharded-kv-no-lost-keys
ex-naive-consensus
pyv-client-server-ae

ex-simple-election
pyv-toy-consensus-epr

ex-toy-consensus
pyv-client-server-db-ae

pyv-firewall
ex-majorityset-leader-election

pyv-consensus-epr
mldr

% proved automatically
0 0.25 0.5 0.75 1

Ind ∧ Next ⇒ Ind′ Proving consecution typically
most burdensome.

If we have Next ≜ T1 ∨ … ∨ Tk

Ind ≜ L1 ∧ … ∧ Ln

We can trivially decompose into subgoals(k ⋅ n)

(Ind ∧ T1 ⇒ L′ 1) … (Ind ∧ Tk ⇒ L′ 1)
⋮

(Ind ∧ T1 ⇒ L′ n) … (Ind ∧ Tk ⇒ L′ n)

Proof burden metric: % of subgoals that required
some manual proof effort.

(k ⋅ n)

Evaluation
TLAPS Proof Burden

