Plain and Simple Inductive Invariant Inference for
Distributed Protocols in TLA+

William Schultz’, lan Dardik?, Stavros Tripakis’

Northeastern University’, Carnegie Mellon Universityt

Designing Distributed Systems

Designing Distributed Systems

« Distributed systems found in all modern cloud, data storage systems

)

&P redis
mongo

adW5S '® Cockroach oe

Tendermint
Cloud C/Q)-)
Spanner

Designing Distributed Systems

« Distributed systems found in all modern cloud, data storage systems

« Underlying protocols are difficult to get right, error-prone [1]

redis

mongo

adWS '® Cockroach ps

cloud @ Tendermint
ou

Spanner

[1] List of bugs found in distributed protocols: https://github.com/dranov/protocol-bugs-list

Table of errors

Protocol

PBFT[1]

[Stoica et al. 2001; Liben-Nowell

Chord

Pastry

Generalised
Paxos

FaB Paxos

Multi-Paxos[4]

Zyzzyva

CRAQ
JPaxos
VR Revisited
EPaxos
EPaxos

Raft

Raft

Raft

hBFT
Tendermint
CAESAR

DPaxos

Sync HotStuff

Gasper

Reference

[Castro and Liskov 1999]

et al. 2002]

[Rowstron and Druschel 2001]

[Lamport 2005]

[Martin and Alvisi 2005; Martin
and Alvisi 2006]

[Chandra et al. 2007]

[Kotla et al. 2007; Kotla et al.
2010]

[Terrace and Freedman 2009]
[Konczak et al. 2011]
[Liskov and Cowling 2012]
[Moraru et al. 2013]
[Moraru et al. 2013]

[Ongaro and Ousterhout 2014]

[Ongaro 2014]

[Ongaro and Ousterhout 2014;
Ongaro 2014]
[Duan et al. 2015]
[Buchman 2016]
[Arun et al. 2017]

[Nawab et al. 2018]

[Abraham et al. 2019]

[Buterin et al. 2020]

Violation

liveness

liveness[2]

safety

non-
triviality[3]

liveness

safety

safety

safety[5]
safety
safety
safety
safety

liveness[6]

safety[7]

liveness

safety
liveness
liveness

safety

safety &
liveness

safety &
liveness

Counter-example

[Berger et al. 2021]

[Zave 2012; Zave 2017]

[Azmy et al. 2016; Azmy et al.
2018]

[Sutra and Shapiro 2010]

[Abraham et al. 2017]

[Michael et al. 2017]

[Abraham et al. 2017]

[Whittaker 2020]
[Michael et al. 2017]
[Michael et al. 2017]

[Sutra 2020]

[Whittaker 2021]

[Hoch 2014]

[Amos and Zhang 2015; Ongaro
2015]

[Howard and Abraham 2020;
Jensen et al. 2021]

[Shrestha et al. 2019]
[Cachin and Vukoli¢ 2017]
[Enes et al. 2021]

[Whittaker et al. 2021]

[Momose and Cruz 2019]

[Neu et al. 2021]

Designing Distributed Systems

« Distributed systems found in all modern cloud, data storage systems

 Underlying protocols are difficult to get right, error-prone [1]

redis

mongo

TCockroach DB

o\ Tendermint
Cloud D

Spanner

[1] List of bugs found in distributed protocols: https://github.com/dranov/protocol-bugs-list

Protocol

Chord

[Ongaro2015] pastry

Table of errors

Reference

[Castro and Liskov 1999]

[Stoica et al. 2001; Liben-Nowell

et al. 2002]

[Rowstron and Druschel 2001]

Violation

liveness

liveness[2]

safety

Counter-example

[Berger et al. 2021]

[Zave 2012; Zave 2017]

[Azmy et al. 2016; Azmy et al.
2018]

bug in single-server membership changes 4974 views

onga...@gmail.com

to raft...@googlegroups.com

Hi raft-dey,

Subscribe z

Jul 10,2015, 12:58:53 AM Y XN

Unfortunately, | need to announce a bug in the dissertation version of membership changes (the single-server changes, not joint consensus). The bug is potentially

severe, but the fix I'm proposing is easy to implement.

When Huanchen Zhang and Brandon Amos were working on a class project at CMU to formalize single-server membership changes, Huanchen found the bug and the
counter-example below by hand. They contacted me over email on May 14th, and | chose to keep this quiet for a while until we had agreed upon a solution to propose to
the list. After several incorrect and/or ugly attempts, | came up with the solution proposed below. | apologize for keeping this information from you for so long.

VR Revisited
EPaxos
EPaxos

Raft

Raft

Raft

hBFT
Tendermint
CAESAR

DPaxos

Sync HotStuff

Gasper

[Liskov and Cowling 2012]
[Moraru et al. 2013]
[Moraru et al. 2013]

[Ongaro and Ousterhout 2014]

[Ongaro 2014]

[Ongaro and Ousterhout 2014;
Ongaro 2014]
[Duan et al. 2015]
[Buchman 2016]
[Arun et al. 2017]

[Nawab et al. 2018]

[Abraham et al. 2019]

[Buterin et al. 2020]

safety
safety

safety

liveness[6]

safety[7]

liveness

safety
liveness
liveness

safety

safety &
liveness

safety &
liveness

[Michael et al. 2017]
[Sutra 2020]
[Whittaker 2021]
[Hoch 2014]

[Amos and Zhang 2015; Ongaro
2015]

[Howard and Abraham 2020;
Jensen et al. 2021]

[Shrestha et al. 2019]
[Cachin and Vukoli¢ 2017]
[Enes et al. 2021]

[Whittaker et al. 2021]

[Momose and Cruz 2019]

[Neu et al. 2021]

Designing Distributed Systems

« Distributed systems found in all modern cloud, data storage systems

« Underlying protocols are difficult to get right, error-prone [1]

redis

mongo

TCockroach DB

cloud @ Tendermint
ou

Spanner

[1] List of bugs found in distributed protocols: https://github.com/dranov/protocol-bugs-list

[Ongaro2015]

Table of errors

Protocol Reference
PBFT[1] [Castro and Liskov 1999]
[Stoica et al. 2001; Liben-Nowell
Chord
et al. 2002]
Pastry [Rowstron and Druschel 2001]

Violation

liveness

liveness[2]

safety

Counter-example

[Berger et al. 2021]

[Zave 2012; Zave 2017]

[Azmy et al. 2016; Azmy et al.
2018]

bug in single-server membership changes 4974 views

‘ onga...@gmail.com
to raft...@googlegroups.com

Hi raft-dey,

Subscribe z

Jul 10,2015, 12:58:53 AM Y XN

Unfortunately, | need to announce a bug in the dissertation version of membership changes (the single-server changes, not joint consensus). The bug is potentially
severe, but the fix I'm proposing is easy to implement.

When Huanchen Zhang and Brandon Amos were working on a class project at CMU to formalize single-server membership changes, Huanchen found the bug and the
counter-example below by hand. They contacted me over email on May 14th, and | chose to keep this quiet for a while until we had agreed upon a solution to propose to
the list. After several incorrect and/or ugly attempts, | came up with the solution proposed below. | apologize for keeping this information from you for so long.

VR Revisited [Liskov and Cowling 2012]

[Sutra2019]

[Moraru et al. 2013]

[NMorari ot Al 20121

safety

safety

oafatyy

[Michael et al. 2017]

[Sutra 2020]

Pierre Sutra

Télécom SudParis
9, rue Charles Fourier
91000 Evry, France

Abstract

On the correctness of Egalitarian Paxos

This paper identifies a problem in both the TLA™ specification and
the implementation of the Egalitarian Paxos protocol. It is related to how
replicas switch from one ballot to another when computing the dependencies
of a command. The problem may lead replicas to diverge and break the
linearizability of the replicated service.

[Whittaker 2021]
[Hoch 2014]

Amos and Zhang 2015; Ongaro
2015]

[Howard and Abraham 2020;
Jensen et al. 2021]

[Shrestha et al. 2019]
[Cachin and Vukoli¢ 2017]
[Enes et al. 2021]

[Whittaker et al. 2021]

[Momose and Cruz 2019]

[Neu et al. 2021]

How to verify real world distributed protocols?

Distributed Protocol Verification

1] Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and Sharon Shoham. 2016. Ivy: safety verification by interactive generalization. SIGPLAN Not. 51, 6 (June 2016), 614-630.

https://doi.org/10.1145/2980983.2908118

2] https://github.com/wilcoxjay/mypyvy
Leslie Lamport. 2002. Specifying Systems: The TLA+ Language and Tools for Hardware and Software Engineers. Addison-Wesley Longman Publishing Co., Inc., USA.

3
4] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, and Michael Deardeuff. 2015. How Amazon web services uses formal methods. Commun. ACM 58, 4 (April
2015), 66—73. https://doi.org/10.1145/2699417

https://doi.org/10.1145/2980983.2908118

Distributed Protocol Verification

« Bounded verification e.g. explicit state, bounded model checking may suffice for initial design
verification.

1] Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and Sharon Shoham. 2016. Ivy: safety verification by interactive generalization. SIGPLAN Not. 51, 6 (June 2016), 614-630.

https://doi.org/10.1145/2980983.2908118

2] https://github.com/wilcoxjay/mypyvy

3] Leslie Lamport. 2002. Specifying Systems: The TLA+ Language and Tools for Hardware and Software Engineers. Addison-Wesley Longman Publishing Co., Inc., USA.
4] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, and Michael Deardeuff. 2015. How Amazon web services uses formal methods. Commun. ACM 58, 4 (April
2015), 66—73. https://doi.org/10.1145/2699417

https://doi.org/10.1145/2980983.2908118

Distributed Protocol Verification

« Bounded verification e.g. explicit state, bounded model checking may suffice for initial design
verification.

« Unbounded safety verification requires development of inductive invariant.

1] Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and Sharon Shoham. 2016. Ivy: safety verification by interactive generalization. SIGPLAN Not. 51, 6 (June 2016), 614-630.

https://doi.org/10.1145/2980983.2908118

2] https://github.com/wilcoxjay/mypyvy
3] Leslie Lamport. 2002. Specifying Systems: The TLA+ Language and Tools for Hardware and Software Engineers. Addison-Wesley Longman Publishing Co., Inc., USA.

4 Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, and Michael Deardeuff. 2015. How Amazon web services uses formal methods. Commun. ACM 58, 4 (April
2015), 66—73. https://doi.org/10.1145/2699417

https://doi.org/10.1145/2980983.2908118

Distributed Protocol Verification

« Bounded verification e.g. explicit state, bounded model checking may suffice for initial design
verification.

« Unbounded safety verification requires development of inductive invariant.

 Finding inductive invariants manually is difficult.

1] Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and Sharon Shoham. 2016. Ivy: safety verification by interactive generalization. SIGPLAN Not. 51, 6 (June 2016), 614-630.

https://doi.org/10.1145/2980983.2908118

2] https://github.com/wilcoxjay/mypyvy

3] Leslie Lamport. 2002. Specifying Systems: The TLA+ Language and Tools for Hardware and Software Engineers. Addison-Wesley Longman Publishing Co., Inc., USA.

4] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, and Michael Deardeuff. 2015. How Amazon web services uses formal methods. Commun. ACM 58, 4 (April

2015), 66—73. https:/doi.org/10.1145/2699417

https://doi.org/10.1145/2980983.2908118

Distributed Protocol Verification

« Bounded verification e.g. explicit state, bounded model checking may suffice for initial design
verification.

« Unbounded safety verification requires development of inductive invariant.
« Finding inductive invariants manually is difficult.

 Jools for inductive invariant inference have been developed for vy [1], mypyvy [2], etc.

1] Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and Sharon Shoham. 2016. Ivy: safety verification by interactive generalization. SIGPLAN Not. 51, 6 (June 2016), 614-630.
https://doi.org/10.1145/2980983.2908118

2] https://github.com/wilcoxjay/mypyvy

3] Leslie Lamport. 2002. Specifying Systems: The TLA+ Language and Tools for Hardware and Software Engineers. Addison-Wesley Longman Publishing Co., Inc., USA.

4] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, and Michael Deardeuff. 2015. How Amazon web services uses formal methods. Commun. ACM 58, 4 (April

2015), 66—73. https:/doi.org/10.1145/2699417

https://doi.org/10.1145/2980983.2908118

Distributed Protocol Verification

« Bounded verification e.g. explicit state, bounded model checking may suffice for initial design
verification.

« Unbounded safety verification requires development of inductive invariant.
« Finding inductive invariants manually is difficult.
 Jools for inductive invariant inference have been developed for vy [1], mypyvy [2], etc.

« No existing approaches for TLA+ [3], a specification language used widely in industry [4].

1] Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and Sharon Shoham. 2016. Ivy: safety verification by interactive generalization. SIGPLAN Not. 51, 6 (June 2016), 614-630.

https://doi.org/10.1145/2980983.2908118

2] https://github.com/wilcoxjay/mypyvy

3] Leslie Lamport. 2002. Specifying Systems: The TLA+ Language and Tools for Hardware and Software Engineers. Addison-Wesley Longman Publishing Co., Inc., USA.

4] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, and Michael Deardeuff. 2015. How Amazon web services uses formal methods. Commun. ACM 58, 4 (April

2015), 66—73. https:/doi.org/10.1145/2699417

https://doi.org/10.1145/2980983.2908118

Our Contributions

endive

An inductive invariant synthesis tool for
distributed protocols specified in TLA+.

Our Contributions

TLC @

endive

An inductive invariant synthesis tool for e tve o
distributed protocols specified in TLA+. Candidate

- TLA+

Specification

Our Contributions

TLC @

endive

An inductive invariant synthesis tool for e tve o
distributed protocols specified in TLA+. Candidate

- TLA+

Specification

O Only existing tool that infers inductive invariants for distributed protocols specified in TLA+.
O Competitive with other state of the art invariant inference tools on diverse benchmark.

O Uniquely solves industrial scale, Raft-based reconfiguration protocol.

Outline

Preliminaries: Safety Verification
Our Approach
Evaluation

Conclusion

Outline

Preliminaries: Safety Verification
Our Approach
Evaluation

Conclusion

Safety Verification of Transition Systems

Let M = (Init, Next) be a transition system.

Safety Verification of Transition Systems

Let M = (Init, Next) be a transition system.

To verify that a predicate Safe is an invariant of M, find an
inductive invariant, Ind, satisfying

Init = Ind (Initiation)
Ind A Next = Ind’ (consecution)
Ind = Safe

Reachable

Incremental Inductive Invariant Inference

Standard view of inductive invariant inference (e.g. IC3/PDR): an incremental lemma
synthesis problem

Reachable

Incremental Inductive Invariant Inference

Standard view of inductive invariant inference (e.g. IC3/PDR): an incremental lemma
synthesis problem

Ind = Safe

Reachable

Incremental Inductive Invariant Inference

Standard view of inductive invariant inference (e.g. IC3/PDR): an incremental lemma
synthesis problem

Ind = Safe
A L,

Reachable

Incremental Inductive Invariant Inference

Standard view of inductive invariant inference (e.g. IC3/PDR): an incremental lemma
synthesis problem

Ind = Safe
A L,
A L,

Reachable

Incremental Inductive Invariant Inference

Standard view of inductive invariant inference (e.g. IC3/PDR): an incremental lemma
synthesis problem

Ind = Safe
A L,
A L,

Reachable

A L

n

Incremental Inductive Invariant Inference

Standard view of inductive invariant inference (e.g. IC3/PDR): an incremental lemma
synthesis problem

Ind = Safe
AL,
AL, L
' emma
Invariants
Reachable
AL,

-

(Note that L, ..., L, are, individually, invariants (not necessarily inductive).)

Outline

Preliminaries: Safety Verification
Our Approach
Evaluation

Conclusion

10

Our Approach

Our Approach

Our overall inductive invariant inference technigue consists of 2 components:

1. Lemma Invariant Generation: Use (plain) invariant synthesis engine to generate candidate
lemma invariants.

2. Lemma Invariant Selection: Select lemma invariants to greedily eliminate sets of
counterexamples to induction (CTIs).

11

Our Approach

Our overall inductive invariant inference technigue consists of 2 components:

1. Lemma Invariant Generation: Use (plain) invariant synthesis engine to generate candidate
lemma invariants.

2. Lemma Invariant Selection: Select lemma invariants to greedily eliminate sets of
counterexamples to induction (CTIs).

Ind = Safe
AL,

(1) Lemma Invariant (2) Lemma Invariant L; € Invs '
—_—> AL

Generator Selection

l

11

Lemma Invariant Generation

12

. . —
Lemma Invariant Generation - —

« Syntax guided, sampling based approach
. TLA+ specification M = (Init, Next) finite instance size (“small scope hypothesis”)

e Grammar G

12

. . —
Lemma Invariant Generation - —

« Syntax guided, sampling based approach
. TLA+ specification M = (Init, Next) finite instance size (“small scope hypothesis”)

e Grammar G

. Randomly sample candidates generated by GG

12

. . —
Lemma Invariant Generation - —

« Syntax guided, sampling based approach
. TLA+ specification M = (Init, Next) finite instance size (“small scope hypothesis”)

. Grammar G
. Randomly sample candidates generated by GG

. Check candidates exhaustively on M with TLC model checker

12

. . —
Lemma Invariant Generation - —

« Syntax guided, sampling based approach
. TLA+ specification M = (Init, Next) finite instance size (“small scope hypothesis”)

. Grammar G
. Randomly sample candidates generated by GG

. Check candidates exhaustively on M with TLC model checker

::= locked[s] | s € held[c] | held[c] = ()
:=Vs € Server : Ve € Client

Example invariant grammar for lockserver.

12

. . —
Lemma Invariant Generation - —

« Syntax guided, sampling based approach
. TLA+ specification M = (Init, Next) finite instance size (“small scope hypothesis”)

. Grammar G
. Randomly sample candidates generated by GG

. Check candidates exhaustively on M with TLC model checker

(seed) ::= locked[s] | s € held[c] | held[c] = Atomic predicates
(quant) ::= Vs € Server : Vc € Client Quantifier template

(expr) ::= (seed) | = (expr) | (expr) V (expr)

(pred) ::= (quant) : (expr)

Example invariant grammar for lockserver.

12

Lemma Invariant Selection

13

Lemma Invariant Selection r— R

Generation

—
- I —

Standard approach is to find lemmas by generalizing from
individual counterexamples to induction (CTIs)

O k-step CTlI for Safe

Safe —Safe

13

Lemma Invariant Selection

14

Reachable

O k-step CTI for Safe

Lemma Invariant Selection

Our approach takes a data-driven view,
with goals of learning concise invariants

14

Reachable

O k-step CTI for Safe

Lemma Invariant Selection

Our approach takes a data-driven view,
with goals of learning concise invariants

Generate many CTls, then choose next
lemma greedily i.e. one that eliminates
greatest number of remaining CTls.

14

Reachable

O k-step CTI for Safe

Lemma Invariant Selection

Our approach takes a data-driven view,
with goals of learning concise invariants

Generate many CTls, then choose next
lemma greedily i.e. one that eliminates
greatest number of remaining CTls.

AV)

14

Reachable

O k-step CTI for Safe

Lemma Invariant Selection

Our approach takes a data-driven view,
with goals of learning concise invariants

Generate many CTls, then choose next
lemma greedily i.e. one that eliminates
greatest number of remaining CTls.

AV)

14

Reachable

O k-step CTI for Safe

Outline

Preliminaries: Safety Verification
Our Approach
Evaluation

Conclusion

15

Evaluation

16

Evaluation

« Compared our tool, endive, against 4 other state of the art invariant inference tools

« IC3PO [1], fol-ic3 [2], SWISS [3], DistAl [4]

[1] Goel, Aman & Sakallah, Karem. (2021). On Symmetry and Quantification: A New Approach to Verify Distributed Protocols. 10.1007/978-3-030-76384-8_9.

[2] Jason R. Koenig, et al. 2020. First-order quantified separators. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI 2020). Association for Computing Machinery, New York, NY, USA, 703-717. https://doi.org/10.1145/3385412.3386018

[3] Travis Hance, Marijn Heule, Ruben Martins, Bryan Parno, Finding Invariants of Distributed Systems: It's a Small (Enough) World After All. NSDI 2027: 115-131
[4] Jianan Yao, Runzhou Tao, et al. DistAl: Data-Driven Automated Invariant Learning for Distributed Protocols. OSD/ 20217: 485-501

16

Evaluation

« Compared our tool, endive, against 4 other state of the art invariant inference tools
« |C3PO [1], fol-ic3 [2], SWISS [3], DistAl [4]

« QOthertools accept lvy/mypyvy so translation to TLA+ was necessary.

[1] Goel, Aman & Sakallah, Karem. (2021). On Symmetry and Quantification: A New Approach to Verify Distributed Protocols. 10.1007/978-3-030-76384-8_09.

[2] Jason R. Koenig, et al. 2020. First-order quantified separators. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI 2020). Association for Computing Machinery, New York, NY, USA, 703-717. https://doi.org/10.1145/3385412.3386018

[3] Travis Hance, Marijn Heule, Ruben Martins, Bryan Parno, Finding Invariants of Distributed Systems: It's a Small (Enough) World After All. NSDI 2027: 115-131
[4] Jianan Yao, Runzhou Tao, et al. DistAl: Data-Driven Automated Invariant Learning for Distributed Protocols. OSD/ 20217: 485-501

16

Evaluation

Compared our tool, endive, against 4 other state of the art invariant inference tools
« |C3PO [1], fol-ic3 [2], SWISS [3], DistAl [4]
Other tools accept lvy/mypyvy so translation to TLA+ was necessary.

Benchmark consists of
« 29 concurrent/distributed protocols of varying complexity (e.g. 2PC, simple consensus)

« 7industrial scale Raft-based reconfiguration protocol.

[1] Goel, Aman & Sakallah, Karem. (2021). On Symmetry and Quantification: A New Approach to Verify Distributed Protocols. 10.1007/978-3-030-76384-8_09.

[2] Jason R. Koenig, et al. 2020. First-order quantified separators. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI 2020). Association for Computing Machinery, New York, NY, USA, 703-717. https://doi.org/10.1145/3385412.3386018

[3] Travis Hance, Marijn Heule, Ruben Martins, Bryan Parno, Finding Invariants of Distributed Systems: It's a Small (Enough) World After All. NSDI 2027: 115-131
[4] Jianan Yao, Runzhou Tao, et al. DistAl: Data-Driven Automated Invariant Learning for Distributed Protocols. OSD/ 20217: 485-501

16

Evaluation

Solved Benchmarks

endive able to solve 26 / 30 of
the benchmarks successftully.

Protocol endive IC3PO fol-ic3 SWISS DistAl
1 tla-consensus
2 tla-tcommit
3 i4-lock-server X
4 ex-quorum-leader-election
5 pyv-toy-consensus-forall X
6 tla-simple X X
7 ex-lockserv-automaton X
8 tla-simpleregular X
9 pyv-sharded-kv
10 pyv-lockserv
11 tla-twophase
12 i4-learning-switch X X X
13 ex-simple-decentralized-lock
14 i4-two-phase-commit
15 pyv-consensus-wo-decide X
16 pyv-consensus-forall X
17 pyv-learning-switch X X
18 i4-chord-ring-maintenance X X X X
19 pyv-sharded-kv-no-lost-keys X
20 ex-naive-consensus X
21 pyv-client-server-ae X
22 ex-simple-election X
23 pyv-toy-consensus-epr X
24 ex-toy-consensus X
25 pyv-client-server-db-ae X X
26 pyv-hybrid-reliable-broadcast X X X
27 pyv-firewall X
28 ex-majorityset-leader-election X X
29 pyV-consensus-epr X
30 midr X X X X

17

Evaluation

Solved Benchmarks

endive able to solve 26 / 30 of
the benchmarks successftully.

Uniquely solved mlidr, an
industrial scale Raft-based
reconfiguration protocol.

Protocol endive IC3PO fol-ic3 SWISS DistAl
1 tla-consensus
2 tla-tcommit
3 i4-lock-server X
4 ex-quorum-leader-election
5 pyv-toy-consensus-forall X
6 tla-simple X X
7 ex-lockserv-automaton X
8 tla-simpleregular X
9 pyv-sharded-kv
10 pyv-lockserv
11 tla-twophase
12 i4-learning-switch X X X
13 ex-simple-decentralized-lock
14 i4-two-phase-commit
15 pyv-consensus-wo-decide X
16 pyv-consensus-forall X
17 pyv-learning-switch X X
18 i4-chord-ring-maintenance X X X X
19 pyv-sharded-kv-no-lost-keys X
20 ex-naive-consensus X
21 pyv-client-server-ae X
22 ex-simple-election X
23 pyv-toy-consensus-epr X
24 ex-toy-consensus X
25 pyv-client-server-db-ae X X
26 pyv-hybrid-reliable-broadcast X X X
27 pyv-firewall X
28 ex-majorityset-leader-election X X
29 pyV-consensus-epr X
30 midr X X X X

17

Evaluation

Relative Invariant Size Comparison

Ind = Safe NLy A ... AL

n

T

size measured as (n + 1)

18

Evaluation

ex-simple-decentralized-lock

Relative Invariant Size Comparison

Ind = Safe NLy A ... AL

T

size measured as (n + 1)

tla-consensus
tla-tcommit

n i4-lock-server
ex-quorum-leader-election
pyv-toy-consensus-forall
tla-simple
ex-lockserv-automaton
tla-simpleregular

pyv-sharded-kv

B endive
Ic3p0O
o fol-ic3
B SWISS
B DistAl

pyv-lockserv

tla-twophase

N N S— —

0 025 05 0.75 1

Relative Invariant Size
(Normalized)

i4-two-phase-commit

pyv-consensus-wo-decide

pyv-consensus-forall

pyv-sharded-kv-no-lost-keys

ex-naive-consensus

pyv-client-server-ae

ex-simple-election

pyv-toy-consensus-epr

ex-toy-consensus

pyv-client-server-db-ae

pyv-firewall

ex-majorityset-leader-election

pyV-consensus-epr

[—————.

IS N — —

S

—

e ———

=

0 025 05 0.75 1

Relative Invariant Size
(Normalized)

18

Conclusion

19

Conclusion

O First technique for inferring inductive invariants for distributed protocols specified in TLA+.

19

Conclusion

O First technique for inferring inductive invariants for distributed protocols specified in TLA+.

O Competitive with other state of the art invariant inference tools.

19

Conclusion

O First technique for inferring inductive invariants for distributed protocols specified in TLA+.
O Competitive with other state of the art invariant inference tools.

O Uniquely solves industrial scale, Raft-based reconfiguration protocol.

19

Conclusion

O First technique for inferring inductive invariants for distributed protocols specified in TLA+.
O Competitive with other state of the art invariant inference tools.

O Uniquely solves industrial scale, Raft-based reconfiguration protocol.

Simple, greedy approach works surprisingly well for this class of protocols.

19

Conclusion

O First technique for inferring inductive invariants for distributed protocols specified in TLA+.
O Competitive with other state of the art invariant inference tools.

O Uniquely solves industrial scale, Raft-based reconfiguration protocol.

Simple, greedy approach works surprisingly well for this class of protocols.

Try out endive:

https://github.com/will62794/endive

19

https://github.com/will62794/endive

Evaluation
TLAPS Proof Burden

20

Evaluation
TLAPS Proof Burden

Proving consecution typically
most burdensome.

Ind N\ Next = Ind’

20

Evaluation
TLAPS Proof Burden

Proving consecution typically
most burdensome.

If we have

Ind N\ Next = Ind’

Next =T,V ...V T,
Ind=L A...\L,

20

Evaluation
TLAPS Proof Burden

Proving consecution typically Ind A Next = Ind’
most burdensome.

If we have Next=T,V ...V T,

Ind=L/ A...AL,

We can trivially decompose into (k - n) subgoals

(IndANT,=> L)) ... (Ind AT, > L))

(Ind ATy => L) ... (Ind AT, => L))

20

Evaluation
TLAPS Proof Burden

Proving consecution typically Ind A Next = Ind’
most burdensome.

If we have Next 2 T,V ..VT

Ind=L A...\NL,

We can trivially decompose into (k - n) subgoals

(Ind AT, = L)) (Ind AT, > L))

(IndANT;, = L)) (Ind AT, = L))

Proof burden metric: % of (k - n) subgoals that required

some manual proof effort.

tla-consensus

tla-tcommit

i4-lock-server
ex-quorum-leader-election
pyv-toy-consensus-forall
tla-simple
ex-lockserv-automaton
tla-simpleregular
pyv-sharded-kv
pyv-lockserv

tla-twophase
ex-simple-decentralized-lock
i4-two-phase-commit
pyv-consensus-wo-decide
pyv-consensus-forall
pyv-sharded-kv-no-lost-keys
ex-naive-consensus
pyv-client-server-ae
ex-simple-election
pyv-toy-consensus-epr
ex-toy-consensus
pyv-client-server-db-ae
pyv-firewall

ex-majorityset-leader-election

pyVv-consensus-epr
midr

i

il

[

H

I

I

I
I
I
I

0.5 0.75 1

% proved automatically

