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Safety Verification of Transition Systems

Let  be a transition system.M = (Init, Next)

Init ⇒ Ind (initiation)
Ind ∧ Next ⇒ Ind′ (consecution)
Ind ⇒ Safe

Safe

Reachable

8

Init

To verify that a predicate  is an invariant of , find an 
inductive invariant, , satisfying

Safe M
Ind
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SafeL1 L2

Incremental Inductive Invariant Inference

Standard view of inductive invariant inference (e.g. IC3/PDR): an incremental lemma 
synthesis problem

Ind ≜ Safe

Lemma 
Invariants

∧ L1

∧ Ln

⋮
∧ L2

Ind

Reachable

9

Note that  are, individually, invariants (not necessarily inductive).L1, …, Ln
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Invs

Ind ≜ Safe
∧ L1
⋮
∧ Li

I2

I1

I8

I4

Our overall inductive invariant inference technique consists of 2 components: 

1. Lemma Invariant Generation: Use (plain) invariant synthesis engine to generate candidate 
lemma invariants. 

2. Lemma Invariant Selection: Select lemma invariants to greedily eliminate sets of 
counterexamples to induction (CTIs).

Li ∈ Invs(1) Lemma Invariant 
Generator

(2) Lemma Invariant 
Selection
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Invs(1) Lemma Invariant 
Generation

(2) Lemma Invariant 
Selection

Example invariant grammar for lockserver.

Atomic predicates
Quantifier template
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Lemma Invariant Selection

Standard approach is to find lemmas by generalizing from 
individual counterexamples to induction (CTIs)
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Safe
k-step CTI for Safe

¬Safe

Invs(1) Lemma Invariant 
Generation

(2) Lemma Invariant 
Selection
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• Compared our tool, endive, against 4 other state of the art invariant inference tools 

• IC3PO [1], fol-ic3 [2], SWISS [3], DistAI [4]

• Other tools accept Ivy/mypyvy so translation to TLA+ was necessary.

• Benchmark consists of  

• 29 concurrent/distributed protocols of varying complexity (e.g. 2PC, simple consensus) 

• 1 industrial scale Raft-based reconfiguration protocol.
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Protocol endive IC3PO fol-ic3 SWISS DistAI

1 tla-consensus ✅ ✅ ✅ ✅ ✅

2 tla-tcommit ✅ ✅ ✅ ✅ ✅

3 i4-lock-server ✅ ✅ ✅ ✅ ❌

4 ex-quorum-leader-election ✅ ✅ ✅ ✅ ✅

5 pyv-toy-consensus-forall ✅ ✅ ✅ ✅ ❌

6 tla-simple ✅ ✅ ❌ ✅ ❌

7 ex-lockserv-automaton ✅ ✅ ✅ ❌ ✅

8 tla-simpleregular ✅ ✅ ✅ ✅ ❌

9 pyv-sharded-kv ✅ ✅ ✅ ✅ ✅

10 pyv-lockserv ✅ ✅ ✅ ✅ ✅

11 tla-twophase ✅ ✅ ✅ ✅ ✅

12 i4-learning-switch ❌ ✅ ❌ ❌ ✅

13 ex-simple-decentralized-lock ✅ ✅ ✅ ✅ ✅

14 i4-two-phase-commit ✅ ✅ ✅ ✅ ✅

15 pyv-consensus-wo-decide ✅ ✅ ✅ ✅ ❌

16 pyv-consensus-forall ✅ ✅ ✅ ✅ ❌

17 pyv-learning-switch ❌ ✅ ❌ ✅ ✅

18 i4-chord-ring-maintenance ❌ ✅ ❌ ❌ ❌

19 pyv-sharded-kv-no-lost-keys ✅ ✅ ✅ ✅ ❌

20 ex-naive-consensus ✅ ✅ ✅ ✅ ❌

21 pyv-client-server-ae ✅ ✅ ✅ ✅ ❌

22 ex-simple-election ✅ ✅ ✅ ✅ ❌

23 pyv-toy-consensus-epr ✅ ✅ ✅ ✅ ❌

24 ex-toy-consensus ✅ ✅ ✅ ✅ ❌

25 pyv-client-server-db-ae ✅ ✅ ❌ ✅ ❌

26 pyv-hybrid-reliable-broadcast ❌ ✅ ✅ ❌ ❌

27 pyv-firewall ✅ ✅ ✅ ✅ ❌

28 ex-majorityset-leader-election ✅ ✅ ❌ ✅ ❌

29 pyv-consensus-epr ✅ ✅ ✅ ✅ ❌

30 mldr ✅ ❌ ❌ ❌ ❌

endive able to solve 26 / 30 of 
the benchmarks successfully.

Solved Benchmarks
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endive able to solve 26 / 30 of 
the benchmarks successfully.

Uniquely solved mldr, an 
industrial scale Raft-based 
reconfiguration protocol.

Solved Benchmarks
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Conclusion

First technique for inferring inductive invariants for distributed protocols specified in TLA+.

Competitive with other state of the art invariant inference tools.

Uniquely solves industrial scale, Raft-based reconfiguration protocol.

19

Simple, greedy approach works surprisingly well for this class of protocols.

Try out endive: 
https://github.com/will62794/endive

https://github.com/will62794/endive
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