
Interactive Safety Verification of Distributed Protocols by
Inductive Proof Decomposition

WILLIAM SCHULTZ, Northeastern University, USA

EDWARD ASHTON, Azure Research, Microsoft, UK

HEIDI HOWARD, Azure Research, Microsoft, UK

STAVROS TRIPAKIS, Northeastern University, USA

Many techniques for automated verification of distributed protocols have been developed over the past several

years, but their performance is still unpredictable and their failure modes can be opaque for industrial scale

verification tasks. Thus, in practice, large-scale verification efforts typically require some amount of human

guidance. In this paper, we present inductive proof decomposition, a new methodology for interactive safety

verification that provides a compositional, interactive approach to inductive invariant development. Our

approach guides the human-aided development of inductive invariants via a novel structure, an inductive proof
graph, which is built incrementally by a human verifier, working backwards from a target safety property.

A user is guided by induction counterexamples that are localized to specific nodes of this graph, and nodes

of this proof graph are further decomposed based on logical actions that appear in a protocol’s transition

relation. Our decomposition also enables a novel slicing technique that hides irrelevant protocol state at each

sub-component of an inductive proof, allowing a user to focus on fine-grained sub-problems rather than a large,

monolithic inductive invariant. We present our technique and experience applying it to develop inductive

safety proofs of several complex distributed protocols, including the Raft and Zab consensus protocols, which

are beyond the capabilities of modern automated verification tools. We also demonstrate how the developed

proof graphs provide additional insight into the structure of a protocol proof and its correctness.

1 INTRODUCTION
Verifying the safety of large-scale distributed and concurrent systems remains an important and

difficult challenge. These protocols serve as the foundation of many modern fault-tolerant systems,

making the correctness of these protocols critical to the reliability of large scale database and

cloud systems [8, 18, 43]. Formally verifying the safety of these protocols typically centers around

development of an inductive invariant, an assertion about system state that is preserved by all

protocol transitions. Developing inductive invariants, however, is one of the most challenging

aspects of safety verification and has typically required a large amount of human effort for real

world protocols [48, 49].

Over the past several years, particularly in the domain of distributed protocol verification, there

have been several recent efforts to develop more automated inductive invariant development

techniques [11, 26, 41, 51]. Many of these tools are based on modern model checking algorithms

like IC3/PDR [11, 12, 24–26], and others based on syntax-guided or enumerative invariant synthesis

methods [15, 50]. These techniques have made significant progress on solving various classes of

distributed protocols, including some variants of real world protocols like the Paxos consensus

protocol [12, 29]. The theoretical complexity limits facing these techniques, however, limit their

ability to be fully general [40] and, even in practice, the performance of these tools on complex

protocols is still unpredictable, and their failure modes can be opaque. In particular, a key drawback

of these methods is that, in their current form, they are very much “all or nothing”. That is, if they

solve a given problem, then no manual proof effort is needed, but if a problem falls outside the

Authors’ addresses: William Schultz, schultz.w@northeastern.edu, Northeastern University, Boston, Massachusetts, USA;

Edward Ashton, , Azure Research, Microsoft, Cambridge, UK; Heidi Howard, , Azure Research, Microsoft, Cambridge, UK;

Stavros Tripakis, , Northeastern University, Boston, USA.



2 William Schultz, Edward Ashton, Heidi Howard, and Stavros Tripakis

scope of what they can solve, little assistance is provided in terms of how to develop a manual

proof or how a human can offer guidance to the tool.

In practice, real world, large-scale verification efforts often require some amount of human

interaction i.e., a human provides guidance when an automated engine is unable to automatically

prove certain properties about a design or protocol. For example, recent verification efforts of

industrial scale protocols either note the high amount of human effort in developing inductive

invariants or leave them as future goals [6, 42]. Several recent, automated approaches have also

adopted a paradigm of integrating human assistance to accelerate proofs for larger verification

problems e.g., in the form of a manually developed refinement hierarchy [12, 33].

Though there has been a large amount of work on scaling automated protocol verification

techniques, there has been considerably less focus on interactive verification. That is, consideration
of how a human can proceed effectively with an inductive proof when a tool fails to solve a

verification task automatically. The Ivy framework [41] was a notable, recent attempt to address

the interactive safety verification problem, but its techniques were targeted at specific goals which

only addressed partial aspects of the problem. Namely, their focus was primarily on (1) ensuring

decidability of verification conditions and (2) incorporating a human into the loop of counterexample

generalization heuristics. Though this addressed some aspects of the human-machine verification

interface, it did not consider other, key issues that arise in large-scale inductive proof efforts. For

example, it did not consider how to manage the structure of a large inductive invariant effectively

as it is being developed, how to provide feedback to a user about progress on the proof, or how to

effectively allow localized reasoning on sub-components of the proof, etc.

In addition to frameworks like Ivy, there is a large amount of work on the use of interactive

theorem proving for system verification [7, 16] e.g., using systems like Coq [3], Isabelle/HOL [36],

ACL2 [20], etc. The learning curve for these tools is typically steep, though, and they have typically

offered a significantly lower degree of automation, making them more laborious to use for many

verification efforts and for protocol designers or engineers [35]. Thus, although these tools provide

a relatively high degree of interactivity, they are often quite complex and tedious to use for practical

verification efforts.

In this paper we present a new, interactive safety verification methodology, inductive proof de-
composition, that provides a compositional approach to interactive inductive invariant development

that allows for a smooth integration between human effort and machine guidance for large-scale

safety proof efforts. We are focused on the human-aided development of inductive invariants,

typically with the assistance of a backend solver for checking inductive proof obligations that can

provide counterexamples to induction. Standard approaches to this process (e.g., as in the paradigm

of Ivy) essentially proceed by having a human verifier examine induction counterexamples in a

linear fashion, with a goal of constructing a monolithic list of lemma invariants whose conjunction

form a valid inductive invariant. We argue that this standard model is poorly suited for large and

complex verification efforts, where inductive invariants may grow to include potentially dozens of

complex conjuncts about protocol state. Our technique aims to make this process fundamentally

compositional, which we believe is a core aspect of any “intuitive" proof process undertaken by a

human (e.g. as in “pen and paper" style proofs), and is also crucial for managing complexity in any

large proof effort [28, 44, 47].

Our technique is based around a novel, formal structure whichwe define, the inductive proof graph,
which imposes a particular compositional structure on an inductive invariant, while also taking into

account the distinct logical actions that are present in most concurrent and distributed protocols.

This graph structure makes explicit the relative induction dependencies between lemmas of a

monolithic inductive invariant, and our proof methodology guides a human verifier to incrementally

construct this graph structure by working backwards from a target safety property. Throughout the



Interactive Safety Verification of Distributed Protocols by Inductive Proof Decomposition 3

process, machine guidance is provided in the form of relative induction counterexamples that are

maintained at each node of this graph, and so can be reasoned about locally, rather than considered

in the scope of the entire inductive invariant. This also allows for local abstractions to be applied

that reduce the complexity of counterexamples to be examined. In particular, we present a novel

counterexample slicing technique, that projects out protocol state variables that are irrelevant to a

node of the proof graph, often significantly reducing the scope of information presented to a user,

easing their analysis task.

We apply our technique to several distributed protocols, including 2 large, industrial-scale

protocol specifications of the Raft [38] and Zab [23] consensus protocols, demonstrating the

effectiveness of our technique and its ability to allow human verifiers to work with large proof

structures effectively. We also show how the resulting proof graph artifacts can provide further

insight into protocol correctness.

In summary, our contributions are as follows:

• Definition and formalization of inductive proof graphs, a formal structure representing the

logical dependencies between conjuncts of an inductive invariant and actions of a distributed

or concurrent protocol. (Section 4)

• Inductive proof decomposition, a methodology for large scale interactive safety proofs that is

based around the incremental, counterexample-guided construction of an inductive proof

graph. (Section 5)

• Implementation of our technique in an interactive verification tool, and an empirical evalua-

tion of our method on several distributed protocols, including large-scale specifications of

the Raft [38] and Zab [23] protocols, and analysis of how the resulting proof artifacts provide

insights into protocol correctness. (Section 6)

2 OVERVIEW
In this section we present an overview of inductive proof decomposition, our proof methodology. We

motivate our approach by discussing the limitations of existing inductive invariant development

techniques on a running example, and then illustrate the core ideas of our approach on this example.

Running Example: SimpleConsensus. Figure 1 shows a formal specification of an abstract consensus

protocol, SimpleConsensus, defined as a symbolic transition system. This protocol utilizes a simple

leader election scheme to select values, and is parameterized on a set of nodes, Node, a set of values
to be chosen, Value, and Quorum, a set of intersecting subsets of Node. Nodes can vote at most once

for another node to become leader, and once a node garners a quorum of votes it may become

leader and decide a value. The top level safety property, NoConflictingValues, shown in Figure 2,

states that no two differing values can be chosen. The specification of this protocol consists of 6

state variables and 5 distinct protocol actions. Figure 2 shows a complete inductive invariant, Ind,
for establishing the NoConflictingValues safety property, which consists of 8 total conjuncts, along

with a subset of definitions for the lemmas in Ind.

2.1 Existing Approaches
In a standard interactive safety verification paradigm (e.g., as done in Ivy [41]), the general tech-

nique is based on iterative analysis of counterexamples to induction. That is, to develop an inductive

invariant such as the one shown in Figure 2, one starts with the top level safety property, No-
ConflictingValues, and generates counterexamples to induction, iteratively developing new lemma

invariants to rule out these counterexamples until the overall invariant becomes inductive.

For large scale protocol verification efforts, there are several issues that arise with this basic

framework. At a high level, when systems and their invariants become large, it becomes increasingly



4 William Schultz, Edward Ashton, Heidi Howard, and Stavros Tripakis

CONSTANTS 𝑁𝑜𝑑𝑒,𝑉𝑎𝑙𝑢𝑒,𝑄𝑢𝑜𝑟𝑢𝑚

VARIABLES
𝑣𝑜𝑡𝑒𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑀𝑠𝑔, 𝑣𝑜𝑡𝑒𝑑,

𝑣𝑜𝑡𝑒𝑀𝑠𝑔, 𝑣𝑜𝑡𝑒𝑠,

𝑙𝑒𝑎𝑑𝑒𝑟, 𝑑𝑒𝑐𝑖𝑑𝑒𝑑

Init ≜ Initial states.

∧ 𝑣𝑜𝑡𝑒𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑀𝑠𝑔 = {}
∧ 𝑣𝑜𝑡𝑒𝑑 = [𝑖 ∈ 𝑁𝑜𝑑𝑒 ↦→ False]
∧ 𝑣𝑜𝑡𝑒𝑀𝑠𝑔 = {}
∧ 𝑣𝑜𝑡𝑒𝑠 = [𝑖 ∈ 𝑁𝑜𝑑𝑒 ↦→ {}]
∧ 𝑙𝑒𝑎𝑑𝑒𝑟 = [𝑖 ∈ 𝑁𝑜𝑑𝑒 ↦→ False]
∧ 𝑑𝑒𝑐𝑖𝑑𝑒𝑑 = [𝑖 ∈ 𝑁𝑜𝑑𝑒 ↦→ {}]

Next ≜ Transition relation.

∃ 𝑖, 𝑗 ∈ 𝑁𝑜𝑑𝑒 : ∃ 𝑣 ∈ 𝑉𝑎𝑙𝑢𝑒 :
∃𝑄 ∈ 𝑄𝑢𝑜𝑟𝑢𝑚 :

∨ SendRequestVote(i, j)
∨ SendVote(i, j)
∨ RecvVote(i, j)
∨ BecomeLeader (i,Q)
∨ Decide(i, v)

Protocol actions.

SendRequestVote(src, dst) ≜
∧ 𝑣𝑜𝑡𝑒𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑀𝑠𝑔′ = 𝑣𝑜𝑡𝑒𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑀𝑠𝑔 ∪ {⟨𝑠𝑟𝑐, 𝑑𝑠𝑡⟩}

SendVote(src, dst) ≜
∧ ¬𝑣𝑜𝑡𝑒𝑑 [𝑠𝑟𝑐]
∧ ⟨𝑑𝑠𝑡, 𝑠𝑟𝑐⟩ ∈ 𝑣𝑜𝑡𝑒𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑀𝑠𝑔

∧ 𝑣𝑜𝑡𝑒𝑀𝑠𝑔′ = 𝑣𝑜𝑡𝑒𝑀𝑠𝑔 ∪ {⟨𝑠𝑟𝑐, 𝑑𝑠𝑡⟩}
∧ 𝑣𝑜𝑡𝑒𝑑 ′[𝑠𝑟𝑐] := True

∧ 𝑣𝑜𝑡𝑒𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑀𝑠𝑔′ = 𝑣𝑜𝑡𝑒𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑀𝑠𝑔 \ {⟨𝑠𝑟𝑐, 𝑑𝑠𝑡⟩}

RecvVote(n, sender) ≜
∧ ⟨𝑠𝑒𝑛𝑑𝑒𝑟, 𝑛⟩ ∈ 𝑣𝑜𝑡𝑒𝑀𝑠𝑔

∧ 𝑣𝑜𝑡𝑒𝑠 ′[𝑛] := 𝑣𝑜𝑡𝑒𝑠 [𝑛] ∪ {𝑠𝑒𝑛𝑑𝑒𝑟 }

BecomeLeader (n,Q) ≜
∧𝑄 ⊆ 𝑣𝑜𝑡𝑒𝑠 [𝑛]
∧ 𝑙𝑒𝑎𝑑𝑒𝑟 ′[𝑛] := True

Decide(n, v) ≜
∧ 𝑙𝑒𝑎𝑑𝑒𝑟 [𝑛]
∧ 𝑑𝑒𝑐𝑖𝑑𝑒𝑑 [𝑛] = {}
∧ 𝑑𝑒𝑐𝑖𝑑𝑒𝑑 ′[𝑛] := {𝑣}

Fig. 1. State variables, initial states (Init), transition relation (Next) for the SimpleConsensus protocol. Defini-
tions of the protocol actions are shown on the right.

NoConflictingValues ≜ Safety property.

∀𝑛1, 𝑛2 ∈ 𝑁𝑜𝑑𝑒, 𝑣1, 𝑣2 ∈ 𝑉𝑎𝑙𝑢𝑒 :
(𝑣1 ∈ 𝑑𝑒𝑐𝑖𝑑𝑒𝑑 [𝑛1] ∧ 𝑣2 ∈ 𝑑𝑒𝑐𝑖𝑑𝑒𝑑 [𝑛2]) ⇒ (𝑣1 = 𝑣2)

UniqueLeaders ≜
∀𝑛1, 𝑛2 ∈ 𝑁𝑜𝑑𝑒 : 𝑙𝑒𝑎𝑑𝑒𝑟 [𝑛1] ∧ 𝑙𝑒𝑎𝑑𝑒𝑟 [𝑛2] ⇒ (𝑛1 = 𝑛2)

LeaderHasQuorum ≜
∀𝑛 ∈ 𝑁𝑜𝑑𝑒 : 𝑙𝑒𝑎𝑑𝑒𝑟 [𝑛] ⇒
(∃𝑄 ∈ 𝑄𝑢𝑜𝑟𝑢𝑚 : 𝑣𝑜𝑡𝑒𝑠 [𝑛] = 𝑄)

LeadersDecide ≜
∀𝑛 ∈ 𝑁𝑜𝑑𝑒 : (𝑑𝑒𝑐𝑖𝑑𝑒𝑑 [𝑛] ≠ {}) ⇒ 𝑙𝑒𝑎𝑑𝑒𝑟 [𝑛]

Ind ≜ Inductive invariant.

∧ 𝑁𝑜𝐶𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑖𝑛𝑔𝑉𝑎𝑙𝑢𝑒𝑠

∧𝑈𝑛𝑖𝑞𝑢𝑒𝐿𝑒𝑎𝑑𝑒𝑟𝑠

∧ 𝐿𝑒𝑎𝑑𝑒𝑟𝐻𝑎𝑠𝑄𝑢𝑜𝑟𝑢𝑚
∧ 𝐿𝑒𝑎𝑑𝑒𝑟𝑠𝐷𝑒𝑐𝑖𝑑𝑒
∧ 𝑁𝑜𝑑𝑒𝑠𝑉𝑜𝑡𝑒𝑂𝑛𝑐𝑒

∧𝑉𝑜𝑡𝑒𝑅𝑒𝑐𝑜𝑟𝑑𝑒𝑑𝐼𝑚𝑝𝑙𝑖𝑒𝑠𝑉𝑜𝑡𝑒𝑀𝑠𝑔

∧𝑉𝑜𝑡𝑒𝑀𝑠𝑔𝑠𝑈𝑛𝑖𝑞𝑢𝑒

∧𝑉𝑜𝑡𝑒𝑀𝑠𝑔𝐼𝑚𝑝𝑙𝑖𝑒𝑠𝑁𝑜𝑑𝑒𝑉𝑜𝑡𝑒𝑑

Fig. 2. Top-level safety property, NoConflictingValues, and complete inductive invariant, Ind, for proving its
safety in the SimpleConsensus from Figure 1. Selected lemma definitions from Ind also shown.

difficult to manage and understand the global structure of these inductive invariants as they are

being developed, since the interaction between existing lemmas of the invariant candidate and the

actions of the system become complex.

For example, consider the development of Ind, the complete inductive invariant for SimpleCon-
sensus shown in Figure 2. Suppose some partial progress has been made, and the current inductive



Interactive Safety Verification of Distributed Protocols by Inductive Proof Decomposition 5

CTI0

CTI1

CTI2

Ind0 =
∧ NoConflictingValues

∧ UniqueLeaders

Ind1 =
∧ NoConflictingValues

∧ UniqueLeaders

∧ LeaderHasQuorum

Ind2 =
∧ NoConflictingValues

∧ UniqueLeaders

∧ LeaderHasQuorum

∧ LeadersDecide

leader = (𝑛1 ↦→ True, 𝑛2 ↦→ False)
voteMsg = { ⟨𝑛2, 𝑛1 ⟩ }
voted = (𝑛1 ↦→ False, 𝑛2 ↦→ False)
decided = (𝑛1 ↦→ {}, 𝑛2 ↦→ {𝑣2 })
votes = (𝑛1 ↦→ {}, 𝑛2 ↦→ {𝑛1, 𝑛2 })
voteRequestMsg = { ⟨𝑛1, 𝑛1 ⟩, ⟨𝑛1, 𝑛2 ⟩ }

𝑆0
leader = (𝑛1 ↦→ True, 𝑛2 ↦→ True)
voteMsg = { ⟨𝑛2, 𝑛1 ⟩ }
voted = (𝑛1 ↦→ False, 𝑛2 ↦→ False)
decided = (𝑛1 ↦→ {}, 𝑛2 ↦→ {𝑣2 })
votes = (𝑛1 ↦→ {}, 𝑛2 ↦→ {𝑛1, 𝑛2 })
voteRequestMsg = { ⟨𝑛1, 𝑛1 ⟩, ⟨𝑛1, 𝑛2 ⟩ }

𝑆′
0

leader = (𝑛1 ↦→ True, 𝑛2 ↦→ False)
voteMsg = { ⟨𝑛1, 𝑛1 ⟩ }
voted = (𝑛1 ↦→ True, 𝑛2 ↦→ True)
decided = (𝑛1 ↦→ {}, 𝑛2 ↦→ {𝑣1 })
votes = (𝑛1 ↦→ {𝑛1, 𝑛2 }, 𝑛2 ↦→ {𝑛1, 𝑛2 })
voteRequestMsg = { ⟨𝑛1, 𝑛1 ⟩ }

𝑆1
leader = (𝑛1 ↦→ True, 𝑛2 ↦→ False)
voteMsg = { ⟨𝑛1, 𝑛1 ⟩ }
voted = (𝑛1 ↦→ True, 𝑛2 ↦→ True)
decided = (𝑛1 ↦→ {𝑣2 }, 𝑛2 ↦→ {𝑣1 })
votes = (𝑛1 ↦→ {𝑛1, 𝑛2 }, 𝑛2 ↦→ {𝑛1, 𝑛2 })
voteRequestMsg = { ⟨𝑛1, 𝑛1 ⟩ }

𝑆′
1

leader = (𝑛1 ↦→ True, 𝑛2 ↦→ False)
voteMsg = { ⟨𝑛1, 𝑛2 ⟩ }
voted = (𝑛1 ↦→ False, 𝑛2 ↦→ False)
decided = (𝑛1 ↦→ {𝑣2 }, 𝑛2 ↦→ {})
votes = (𝑛1 ↦→ {𝑛1, 𝑛2 }, 𝑛2 ↦→ {𝑛1, 𝑛2 })
voteRequestMsg = { ⟨𝑛1, 𝑛2 ⟩, ⟨𝑛2, 𝑛1 ⟩ }

𝑆2
leader = (𝑛1 ↦→ True, 𝑛2 ↦→ True)
voteMsg = { ⟨𝑛1, 𝑛2 ⟩ }
voted = (𝑛1 ↦→ False, 𝑛2 ↦→ False)
decided = (𝑛1 ↦→ {𝑣2 }, 𝑛2 ↦→ {})
votes = (𝑛1 ↦→ {𝑛1, 𝑛2 }, 𝑛2 ↦→ {𝑛1, 𝑛2 })
voteRequestMsg = { ⟨𝑛1, 𝑛2 ⟩, ⟨𝑛2, 𝑛1 ⟩ }

𝑆′
2

. . .

𝑆′
1
⊨ 𝐼𝑛𝑑1? ∧ NoConflictingValues ✗

∧ UniqueLeaders

∧ LeaderHasQuorum

𝑆′
2
⊨ 𝐼𝑛𝑑2? ∧ NoConflictingValues

∧ UniqueLeaders ✗
∧ LeaderHasQuorum

∧ LeadersDecide

𝑆′
0
⊨ 𝐼𝑛𝑑0? ∧ NoConflictingValues

∧ UniqueLeaders ✗

Add LeaderHasQuorum.

Add LeadersDecide.

Add NodesVoteOnce.

𝐼𝑛𝑑0 ∧𝑇 ⇒ 𝐼𝑛𝑑′
0

✗

𝐼𝑛𝑑1 ∧𝑇 ⇒ 𝐼𝑛𝑑′
1

✗

𝐼𝑛𝑑2 ∧𝑇 ⇒ 𝐼𝑛𝑑′
2

✗

BecomeLeader

BecomeLeader

Decide

Fig. 3. Possible CTI generation and analysis sequence for a standard inductive invariant development proce-
dure for the SimpleConsensus protocol shown in Figure 1. Modified state variables in CTIs are bolded.

invariant candidate consists of the initial 2 lemmas, as follows:

𝐼𝑛𝑑0 ≜ ∧ NoConflictingValues
∧ UniqueLeaders (1)

The basic next step in this process is to generate a counterexample to induction (CTI) for 𝐼𝑛𝑑0,

analyze this CTI, and develop a lemma invariant that rules it out.

At this point, a user is already faced with several questions about how to proceed effectively.

First, there may be many possible CTIs that exist for a current inductive invariant candidate, and

one of these CTIs must be generated and selected for analysis. Without an explicit CTI management

strategy, it is possible for a user’s sequence of CTI analyses to end up context switching between

different underlying proof obligations, which can be inefficient and cognitively burdensome. For

example, as seen in the sample analysis sequence illustrated in Figure 3, CTI0 and CTI2 are, in fact,

both possible CTIs for 𝐼𝑛𝑑0, and are both associated with violations of the UniqueLeaders lemma.

Thus, the corresponding lemmas developed to rule out each of these CTIs (LeaderHasQuorum and

NodesVoteOnce) are needed to ensure that UniqueLeaders holds inductively. As shown in Figure

3, however, CTI0 and CTI2 are interrupted by the presentation of CTI1, which is associated with



6 William Schultz, Edward Ashton, Heidi Howard, and Stavros Tripakis

the violation of an unrelated lemma, NoConflictingValues. For large proofs with large numbers of

outstanding CTIs, this context switching and management problem is only exacerbated.

In addition to this CTI management and context switching issue, during analysis of a particular

CTI it is difficult to determine which aspects of the protocol are actually relevant to eliminating that

CTI. For example, if we consider CTI1 from Figure 3, a basic part of the analysis task is to determine

why CTI1 is unreachable in our system. A precise analysis may observe that NoConflictingValues is
the lemma invariant violated by this CTI in state 𝑆 ′

1
, which helps us focus on the 𝐷𝑒𝑐𝑖𝑑𝑒 action

and NoConflictingValues lemma pair, narrowing our analysis to the {𝑙𝑒𝑎𝑑𝑒𝑟, 𝑑𝑒𝑐𝑖𝑑𝑒𝑑} set of state
variables. After more thought, a user might discover that this violation is due to the fact that a

key property of the system has been violated, namely, the property that only leaders could have

decided a value. The user would develop a new lemma invariant, LeadersDecide, add it to the set

of lemma invariants, and proceed to check the inductiveness of the new, strengthened inductive

invariant candidate. This sequence of reasoning represents a typically manual process of localizing

one’s analysis to a particular subset of relevant protocol state. In existing approaches, though, there

exists no systematic technique for performing this kind of localization.

As a proof proceeds, it is also difficult to understand the current status and structure of the

overall inductive invariant. For example, after addition of a new lemma, it is not clear whether it

introduced new CTIs, or discharged any existing inductive proof obligations of the current invariant

candidate, or both. We also have little view into the logical dependencies between lemmas of the

current inductive invariant e.g., in the sense of how one lemma depends inductively on another,

or a subset of other lemmas, making it difficult to understand the overall proof structure as we

proceed.

In summary, we characterize the above issues with existing invariant development approaches

into the following broad themes:

Q1. CTI Management: How does one manage the set of CTIs for the current inductive invariant

and decide which CTI from this set to analyze?

Q2. Localization: Once a CTI is selected, how does one focus their analysis only on the lemmas,

actions, and state variables that are relevant to analysis of this CTI?

Q3. Proof Status and Structure: As new lemmas are developed, how can the current proof status,

structure, and progress be measured?

Our work in this paper is largely motivated by the fact that, to our knowledge, no existing proof

methodologies provide a formal, conceptual framework for addressing the above questions, which

makes the counterexample-guided inductive invariant development process one that can be opaque

and extremely laborious even for relatively experienced protocol designers or human verifiers.

2.2 Our Approach: Inductive Proof Decomposition
To address the limitations of existing techniques as described above, our proof methodology,

inductive proof decomposition, centers around applying a new, fundamental type of decomposition

to the structure of an inductive invariant. This decomposition gives rise to the inductive proof graph,
a novel structure we define and use to guide proof development.

We illustrate the benefits of our approach by working through development of the SimpleConsen-
sus partial inductive invariant from Section 2.1, contrasting these to the problems faced in existing

approaches.

2.2.1 Our Interactive Verification Procedure. Figure 4a shows an in-progress inductive proof graph

that corresponds to the partially completed inductive invariant from Formula 1. The main nodes

of this graph, lemma nodes, correspond to lemmas of a system (so can be mapped to lemmas of a

standard inductive invariant), and the edges represent relative induction dependencies between



Interactive Safety Verification of Distributed Protocols by Inductive Proof Decomposition 7

NoConflictingValues ✗

Decide ✗

𝑉𝑠𝑙𝑖𝑐𝑒={𝑙𝑒𝑎𝑑𝑒𝑟, 𝑑𝑒𝑐𝑖𝑑𝑒𝑑}

UniqueLeaders ✗

BecomeLeader ✗

𝑉𝑠𝑙𝑖𝑐𝑒={𝑙𝑒𝑎𝑑𝑒𝑟, 𝑣𝑜𝑡𝑒𝑠}
CTI1 (𝑆𝑙𝑖𝑐𝑒𝑑)
leader = (𝑛1 ↦→ True, 𝑛2 ↦→ False)
decided = (𝑛1 ↦→ {}, 𝑛2 ↦→ {𝑣1})

CTI0 (𝑆𝑙𝑖𝑐𝑒𝑑)
leader = (𝑛1 ↦→ True, 𝑛2 ↦→ False)
votes = (𝑛1 ↦→ {}, 𝑛2 ↦→ {𝑛1, 𝑛2})

(a) In-progress proof graph for Formula 1.

NoConflictingValues ✓

Decide ✓
𝑉𝑠𝑙𝑖𝑐𝑒={𝑙𝑒𝑎𝑑𝑒𝑟, 𝑑𝑒𝑐𝑖𝑑𝑒𝑑}

LeadersDecide ✓ UniqueLeaders ✗

BecomeLeader ✗

𝑉𝑠𝑙𝑖𝑐𝑒={𝑙𝑒𝑎𝑑𝑒𝑟, 𝑣𝑜𝑡𝑒𝑠}

CTI0 (𝑆𝑙𝑖𝑐𝑒𝑑)
leader = (𝑛1 ↦→ True, 𝑛2 ↦→ False)
votes = (𝑛1 ↦→ {}, 𝑛2 ↦→ {𝑛1, 𝑛2})

(b) Proof step 2.

NoConflictingValues ✓

Decide ✓
𝑉𝑠𝑙𝑖𝑐𝑒={𝑙𝑒𝑎𝑑𝑒𝑟, 𝑑𝑒𝑐𝑖𝑑𝑒𝑑}

LeadersDecide ✓ UniqueLeaders ✗

BecomeLeader ✗

𝑉𝑠𝑙𝑖𝑐𝑒={𝑙𝑒𝑎𝑑𝑒𝑟, 𝑣𝑜𝑡𝑒𝑠}

LeaderHasQuorum ✓

CTI2 (𝑆𝑙𝑖𝑐𝑒𝑑)
leader = (𝑛1 ↦→ True, 𝑛2 ↦→ False)
votes = (𝑛1 ↦→ {𝑛1, 𝑛2}, 𝑛2 ↦→ {𝑛1, 𝑛2})

(c) Proof step 3.

NoConflictingValues ✓

Decide ✓
𝑉𝑠𝑙𝑖𝑐𝑒={𝑙𝑒𝑎𝑑𝑒𝑟, 𝑑𝑒𝑐𝑖𝑑𝑒𝑑}

LeadersDecide ✓ UniqueLeaders ✓

BecomeLeader ✓
𝑉𝑠𝑙𝑖𝑐𝑒={𝑙𝑒𝑎𝑑𝑒𝑟, 𝑣𝑜𝑡𝑒𝑠}

LeaderHasQuorum ✓NodesVoteOnce ✗

RecvVote ✗

𝑉𝑠𝑙𝑖𝑐𝑒={𝑣𝑜𝑡𝑒𝑀𝑠𝑔, 𝑣𝑜𝑡𝑒𝑠}

(d) Proof step 4.

Fig. 4. Example progression of inductive proof graph development. Nodes in orange with ✗ are those with
remaining inductive proof obligations to be discharged, and those in green with ✓ represent those with all
obligations discharged. Note that only pre-states of CTIs are shown, for brevity, and that CTIs are not a part
of the proof graph itself but shown as annotations associated with action nodes.

these lemmas. This dependency structure is also decomposed by protocol actions, represented

in the graph via action nodes, which are associated with each lemma node, and map to distinct

protocol actions (e.g., the actions of SimpleConsensus listed in Figure 1). Formally, an action and

lemma node pair (𝐿,𝐴) is associated with a corresponding proof obligation 𝑆𝑢𝑝𝑝𝐴 ∧ 𝐿 ∧𝐴⇒ 𝐿′,
where 𝑆𝑢𝑝𝑝𝐴 is the conjunction of incoming lemma nodes to action node 𝐴.

Our invariant development process now starts from the partial inductive proof graph shown in

Figure 4a, from which the possible next steps in our process are now significantly easier to assess.

In particular, it is clear that the 𝐷𝑒𝑐𝑖𝑑𝑒 and 𝐵𝑒𝑐𝑜𝑚𝑒𝐿𝑒𝑎𝑑𝑒𝑟 nodes are unproven (shown in orange

and marked with ✗), meaning that there are outstanding CTIs for the inductive proof obligations

of those nodes as explained above. Additionally, we can focus on separate CTIs in isolation, since

CTIs are now associated with specific action nodes. This makes it clear which lemmas and actions

the counterexamples are relevant to, alleviating the issues raised in Q1 discussed above.

To proceed in the development of our inductive invariant, we extend this graph by developing

appropriate support lemmas and associated edges. For example, we may first select CTI1 to analyze,
as shown in Figure 4a. In addition to the localization of counterexamples, the decomposition

provided by the proof graph also allows for localized state variable projection to be applied to the

CTIs at each action node. These projected variable sets, which we refer to as variable slices, are
shown as 𝑉𝑠𝑙𝑖𝑐𝑒 alongside each action node. For example, at the 𝐷𝑒𝑐𝑖𝑑𝑒 node in Figure 4a, which

CTI1 is associated with, 𝑉𝑠𝑙𝑖𝑐𝑒 = {𝑙𝑒𝑎𝑑𝑒𝑟, 𝑑𝑒𝑐𝑖𝑑𝑒𝑑}, containing only 2 out of 6 total state variables



8 William Schultz, Edward Ashton, Heidi Howard, and Stavros Tripakis

NoConflictingValues ✓

Decide ✓
𝑉𝑠𝑙𝑖𝑐𝑒={𝑙𝑒𝑎𝑑𝑒𝑟, 𝑑𝑒𝑐𝑖𝑑𝑒𝑑}

LeadersDecide ✓ UniqueLeaders ✓

BecomeLeader ✓
𝑉𝑠𝑙𝑖𝑐𝑒={𝑙𝑒𝑎𝑑𝑒𝑟, 𝑣𝑜𝑡𝑒𝑠}

LeaderHasQuorum ✓NodesVoteOnce ✓

RecvVote ✓
𝑉𝑠𝑙𝑖𝑐𝑒={𝑣𝑜𝑡𝑒𝑀𝑠𝑔, 𝑣𝑜𝑡𝑒𝑠}

VoteRecvdImpliesVoteMsg ✓VoteMsgsUnique ✓

SendVote ✓
𝑉𝑠𝑙𝑖𝑐𝑒={𝑣𝑜𝑡𝑒𝑀𝑠𝑔, 𝑣𝑜𝑡𝑒𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑀𝑠𝑔, 𝑣𝑜𝑡𝑒𝑑}

VoteMsgImpliesVoted ✓

Fig. 5. Complete inductive proof graph for SimpleConsensus and safety property NoConflictingValues. Lemma
nodes are depicted as rounded boxes and action nodes as rectangles.

of the SimpleConsensus system. These slices can be computed by a particular static analysis of

an action-lemma pair and, as seen in this example, this technique often significantly reduces the

number of state variables to be considered at each node. This can greatly reduce the analysis burden

on a human user, addressing the issues raised in Q2 above.

After analyzing CTI1 we may develop the LeadersDecide lemma, which states that only leaders

could have decided values, and rules out CTI1. LeadersDecide is then added as a new incoming

support lemma of the Decide action node, leading us to the proof graph state shown in Figure 4b.

At this point, we see from the graph status that lemmas NoConflictingValues and LeadersDecide
are discharged, so we no longer need to consider these lemmas in our reasoning. This gives us a

useful dynamic measure of proof status and logical structure as we develop new lemmas over time,

touching upon the issues discussed in Q3 above.

Next, as shown in Figure 4b, we have a remaining counterexample, CTI0, associated with the

unproven BecomeLeader node. Here, we again benefit from local counterexample slicing, which gives

𝑉𝑠𝑙𝑖𝑐𝑒 = {𝑙𝑒𝑎𝑑𝑒𝑟, 𝑣𝑜𝑡𝑒𝑠} at this BecomeLeader node. Analysis of CTI0 yields the LeaderHasQuorum
support lemma, which is self-inductive, leading us to the proof state in Figure 4c. From there,

we develop one additional support lemma to rule out CTI2, giving us the NodesVoteOnce support
lemma, which is sufficient to discharge the UniqueLeaders lemma node, leading us to the proof

state shown in Figure 4d. We do not show a further progression of the proof process for this graph,

but we can see from Figure 4d that this process can be continued in a backwards fashion, starting

now from the remaining unproven node NodesVoteOnce and its associated action node 𝑅𝑒𝑐𝑣𝑉𝑜𝑡𝑒 . A

fully completed proof graph is shown in Figure 5, where every node has been discharged i.e., has a

valid set of support lemmas.

Although this is a relatively small protocol and invariant, this example begins to demonstrate

the value of our interactive, compositional proof methodology. Our decomposition based on the

inductive proof graph structure makes explicit the relationship between lemmas and protocol

actions as the inductive invariant is being built, and, enabled by this structure, we are able to

localize the analysis of CTIs to specific nodes of this graph. Additionally, this counterexample

localization enables our slicing technique, which projects out irrelevant state from the CTIs that

need to be analyzed by a human verifier.



Interactive Safety Verification of Distributed Protocols by Inductive Proof Decomposition 9

In the remainder of this paper, we formalize the above ideas in detail, and present a more extensive

evaluation applying this proof methodology to several complex protocols.

3 PRELIMINARIES
We are focused on the problem of safety verification of protocols formalized as discrete transition

systems, which consists of a core problem of finding adequate inductive invariants. Furthermore,

we are focused on verification of systems that are assumed to be correct i.e., we assume various

bug-finding methods ([17],[4]) have been applied upfront before a proof is undertaken.

Transition Systems and Invariants. The protocols considered in this paper can be modeled as

symbolic transition systems, where a state predicate I defines the possible values of state variables at
initial states of the system, and a predicate 𝑇 defines the transition relation. A transition system𝑀

is then defined as𝑀 = (𝐼 ,𝑇 ), and the behaviors of𝑀 are defined as the set of all sequences of states

𝜎1 → 𝜎2 → . . . that begin in some state satisfying 𝐼 and where every transition 𝜎𝑖 → 𝜎𝑖+1 satisfies
𝑇 . The reachable states of𝑀 are the set of all states that exist in some behavior. In this paper we

are concerned with the verification of invariants, which are predicates over the state variables of a

system that hold true at every reachable state of a system𝑀 . In this paper, we also assume that the

transition relation 𝑇 for a system𝑀 is composed of distinct logical actions, 𝑇 = 𝐴1 ∨ · · · ∨𝐴𝑘 . For

example, a simple transition relation of this form is𝑇 = (𝑥 ′ = 𝑥 + 1) ∨ (𝑥 ′ = 𝑥 + 2), where a primed

state variable (𝑥 ′) represents the value of that state variable in the next state.

Guarded Actions. We also define a restricted class of systems where transition relations are

expressed in a guarded action style. That is, systemswhere all actions𝐴 are of the form𝐴 = 𝑃𝑟𝑒∧𝑃𝑜𝑠𝑡 ,
where 𝑃𝑟𝑒 is a predicate over current state variables and 𝑃𝑜𝑠𝑡 is a conjunction of update formulas

of the form 𝑥 ′𝑖 = 𝑓𝑖 (D𝑖 ), where 𝑓𝑖 is some expression over a subset of current state variablesD𝑖 . For

simplicity, we assume that all state variables always appear in 𝑃𝑜𝑠𝑡 , and that for variables unchanged

by a protocol action, they simply appear in 𝑃𝑜𝑠𝑡 with an identity update expression, 𝑥 ′𝑖 = 𝑥𝑖 . Note

that although systems in guarded action style have deterministic update expressions, these systems

can still be non-deterministic, due to non-determinism over constant system parameters, e.g., as

seen in SimpleConsensus in Figure 1.

Inductive Invariants and Relative Induction. The standard technique for proving an invariant 𝑆 of

a system 𝑀 = (𝐼 ,𝑇 ) is to develop an inductive invariant [34], which is a state predicate 𝐼𝑛𝑑 such

that 𝐼𝑛𝑑 ⇒ 𝑆 and

𝐼 ⇒ 𝐼𝑛𝑑 (2)

𝐼𝑛𝑑 ∧𝑇 ⇒ 𝐼𝑛𝑑 ′ (3)

where 𝐼𝑛𝑑 ′ denotes the predicate 𝐼𝑛𝑑 where state variables are replaced by their primed, next-

state versions. Conditions (2) and (3) are, respectively, referred to as initiation and consecution.
Condition (2) states that 𝐼𝑛𝑑 holds at all initial states. Condition (3) states that 𝐼𝑛𝑑 is inductive, i.e.,
if it holds at some state 𝑠 then it also holds at any successor of 𝑠 . Together these two conditions

imply that 𝐼𝑛𝑑 is also an invariant, i.e., that 𝐼𝑛𝑑 holds at all reachable states.

Typically, an inductive invariant is represented as a strengthening of 𝑆 via a conjunction of smaller

lemma invariants, 𝐿1, . . . , 𝐿𝑘 , such that the final inductive invariant is defined as 𝐼𝑛𝑑 = 𝑆∧𝐿1∧· · ·∧𝐿𝑘 .
Throughout this paper we assume inductive invariants can be represented in this form. Note also

that for a given system𝑀 = (𝐼 ,𝑇 ), a state predicate may be inductive only under the assumption

of some other predicate. For given state predicates 𝐼𝑛𝑑 and 𝐿, if the formula 𝐿 ∧ 𝐼𝑛𝑑 ∧𝑇 ⇒ 𝐼𝑛𝑑 ′ is
valid, we say that 𝐼𝑛𝑑 is inductive relative to 𝐿.



10 William Schultz, Edward Ashton, Heidi Howard, and Stavros Tripakis

4 INDUCTIVE PROOF GRAPHS
Our approach to interactive inductive invariant development is based on a core logical structure,

the inductive proof graph, which we discuss and formalize in this section. This graph encodes the

structure of an inductive invariant in a way that is amenable to localized reasoning and human

interpretability, and can naturally be decomposed into discrete proof obligations. We begin at a

high level in Section 4.1 by discussing a basic version of this graph based on relative induction

dependencies. In Section 4.2 we give the full definition of the structure, which takes advantage of

action-based decomposition. Section 5 then describes our proof approach based on this structure,

inductive proof decomposition, where a human verifier incrementally constructs this structure by

working backwards from a target safety property.

4.1 Relative Induction Graph
Amonolithic approach to inductive invariant development, where one searches for a single inductive

invariant that is a conjunction of smaller lemmas, is a general proof methodology for safety

verification [34]. Any monolithic inductive invariant, however, can alternatively be viewed in terms

of its relative induction dependency structure, which is the initial basis for our formalization of the

inductive proof graph structure.

Namely, for a transition system𝑀 = (𝐼 ,𝑇 ) and associated invariant 𝑆 , given an inductive invariant
𝐼𝑛𝑑 = 𝑆 ∧ 𝐿1 ∧ · · · ∧ 𝐿𝑘

each lemma in this overall invariant may only depend inductively on some other subset of lemmas

in 𝐼𝑛𝑑 . More formally, proving the consecution step of such an invariant requires establishing

validity of the following formula

(𝑆 ∧ 𝐿1 ∧ · · · ∧ 𝐿𝑘 ) ∧𝑇 ⇒ (𝑆 ∧ 𝐿1 ∧ · · · ∧ 𝐿𝑘 ) ′ (4)

which can be decomposed into the following set of independent proof obligations:

(𝑆 ∧ 𝐿1 ∧ · · · ∧ 𝐿𝑘 ) ∧𝑇 ⇒ 𝑆 ′

(𝑆 ∧ 𝐿1 ∧ · · · ∧ 𝐿𝑘 ) ∧𝑇 ⇒ 𝐿′
1

...

(𝑆 ∧ 𝐿1 ∧ · · · ∧ 𝐿𝑘 ) ∧𝑇 ⇒ 𝐿′
𝑘

(5)

If the overall invariant 𝐼𝑛𝑑 is inductive, then each of the proof obligations in Formula 5 must be

valid. That is, each lemma in 𝐼𝑛𝑑 is inductive relative to the conjunction of all other lemmas in 𝐼𝑛𝑑 .

With this in mind, if we define L = {𝑆, 𝐿1, . . . , 𝐿𝑘 } as the lemma set of 𝐼𝑛𝑑 , we can consider the

notion of a support set for a lemma in L as any subset𝑈 ⊆ L such that 𝐿 is inductive relative to the

conjunction of lemmas in𝑈 i.e., (∧ℓ∈𝑈 ℓ) ∧ 𝐿 ∧𝑇 ⇒ 𝐿′. As shown above in Formula 5, L is always

a support set for any lemma in L, but it may not be the smallest support set. This support set notion

gives rise a structure we refer to as the lemma support graph, which is induced by each lemma’s

mapping to a given support set, each of which may be much smaller than L. Figure 6 shows an
example of an abstract lemma support graph along with the corresponding proof obligations that

map to each node of the graph.

4.2 Action Decomposition
The initial definition of lemma support graphs given above considers lemmas as nodes of this

graph, and support edges as running from one lemma to another. For distributed and concurrent

protocols, however, the transition relation of a system𝑀 = (𝐼 ,𝑇 ) is typically a disjunction of several

distinct actions i.e., 𝑇 = 𝐴1 ∨ · · · ∨𝐴𝑛 , as described in Section 3. This provides an additional layer



Interactive Safety Verification of Distributed Protocols by Inductive Proof Decomposition 11

𝐼𝑛𝑑 = ∧ 𝑆
∧ 𝐿1
∧ 𝐿2
∧ 𝐿1.1
∧ 𝐿1.2 𝑆

𝐿1

𝐿1.1 𝐿1.2

𝐿2

𝐿1.1 ∧𝑇 ⇒𝐿′
1.1

𝐿1.2 ∧𝑇 ⇒𝐿′
1.2

𝐿1.1 ∧ 𝐿1.2 ∧ 𝐿1 ∧𝑇 ⇒𝐿′
1

𝐿1.2 ∧ 𝐿2 ∧𝑇 ⇒𝐿′
2

𝐿1 ∧ 𝐿2 ∧ 𝑆 ∧𝑇 ⇒𝑆 ′

Fig. 6. A lemma support graph for an inductive invariant 𝐼𝑛𝑑 , and corresponding proof obligations.

𝑆

𝐴1 𝐴2

𝐿1

𝐿1.2

𝐿2

𝐴1 𝐴1

𝐿1.1

(𝐿1 ∧ 𝑆 ∧𝐴1 ⇒ 𝑆′) (𝐿2 ∧ 𝑆 ∧𝐴2 ⇒ 𝑆′)

(𝐿1.1 ∧ 𝐿1.2 ∧ 𝐿1 ∧𝐴1 ⇒ 𝐿′
1
) (𝐿1.2 ∧ 𝐿2 ∧𝐴1 ⇒ 𝐿′

2
)

Fig. 7. Inductive proof graph based on Figure 6, with action decomposition applied. Action nodes are depicted
as boxes, and associated inductive proof obligations are shown in parentheses next to each action node.
Self-inductive obligations are omitted for brevity. Action to lemma node relationships are shown as incoming
dotted edges.

of decomposition that can be applied to the lemma support graph notion, which gives rise to the

full definition of the inductive proof graph structure.

Each node of a lemma support graph is augmented with sub-nodes, one for each action of

the overall transition relation. Lemma support edges in the graph then run from a lemma to a

specific action node, rather than directly to a target lemma. Incorporation of this action-based

decomposition now lets us define the full inductive proof graph structure.

Definition 4.1. For a system 𝑀 = (𝐼 ,𝑇 ) with 𝑇 = 𝐴1 ∨ · · · ∨ 𝐴𝑘 , an inductive proof graph is a

directed graph (𝑉 , 𝐸) where
• 𝑉 = 𝑉𝐿 ∪𝑉𝐴 consists of a set of lemma nodes 𝑉𝐿 and action nodes 𝑉𝐴, where
– 𝑉𝐿 is a set of state predicates over𝑀 .

– 𝑉𝐴 = 𝑉𝐿 × {𝐴1, . . . , 𝐴𝑘 } is a set of action nodes, associated with each lemma node in 𝑉𝐿 .

• 𝐸 ⊆ 𝑉𝐿 ×𝑉𝐴 is a set of lemma support edges.

Figure 7 shows an example of an inductive proof graph along with its corresponding inductive

proof obligations annotating each action node. Note that, for simplicity, when depicting inductive

proof graphs, if an action node is self-inductive, we omit it. Also, action nodes are, by default,

always associated with a particular lemma, so when depicting these graphs, we show dotted edges

that connect action nodes to their parent lemma node, even though these edges do not appear in

the formal definition.

4.2.1 Proof Graph Validity. We now define a notion of validity for an inductive proof graph. That is,

we define conditions on when a proof graph can be seen as corresponding to a complete inductive

invariant and, correspondingly, when the lemmas of the graph can be determined to be invariants

of the underlying system.



12 William Schultz, Edward Ashton, Heidi Howard, and Stavros Tripakis

Definition 4.2 (Local Action Validity). For an inductive proof graph (𝑉𝐿 ∪𝑉𝐴, 𝐸), let the inductive
support set of an action node (𝐿,𝐴) ∈ 𝑉𝐴 be defined as 𝑆𝑢𝑝𝑝 (𝐿,𝐴) = {ℓ ∈ 𝑉𝐿 : (ℓ, (𝐿,𝐴)) ∈ 𝐸}. We

then say that an action node (𝐿,𝐴) is locally valid if the following holds:

©­«
∧

ℓ∈𝑆𝑢𝑝𝑝 (𝐿,𝐴)
ℓ
ª®¬ ∧ 𝐿 ∧𝐴⇒ 𝐿′ (6)

Definition 4.3 (Local Lemma Validity). For an inductive proof graph (𝑉𝐿 ∪𝑉𝐴, 𝐸), a lemma node

𝐿 ∈ 𝑉𝐿 is locally valid if all of its associated action nodes, {𝐿} × {𝐴1, . . . , 𝐴𝑘 }, are locally valid.

Based on the above local validity definitions, the notion of validity for a full inductive proof

graph is then straightforward to define.

Definition 4.4 (Inductive Proof Graph Validity). An inductive proof graph is valid whenever all

lemma nodes of the graph are locally valid.

The validity notion for an inductive proof graph establishes lemmas of such a graph as invariants

of the underlying system𝑀 , since a valid inductive proof graph can be seen to correspond with a

complete inductive invariant. We formalize this as follows.

Lemma 4.5. For a system𝑀 = (𝐼 ,𝑇 ), if an inductive proof graph (𝑉𝐿 ∪𝑉𝐴, 𝐸) for𝑀 is valid, and
𝐼 ⇒ 𝐿 for every 𝐿 ∈ 𝑉𝐿 , then the conjunction of all lemmas in 𝑉𝐿 is an inductive invariant.

Proof. The conjunction of all lemmas in a valid graph must be an inductive invariant, since

every lemma’s support set exists as a subset of all lemmas in the proof graph, and all lemmas hold

on the initial states. □

Theorem 4.6. For a system𝑀 = (𝐼 ,𝑇 ), if a corresponding inductive proof graph (𝑉𝐿 ∪𝑉𝐴, 𝐸) for𝑀
is valid, and 𝐼 ⇒ 𝐿 for every 𝐿 ∈ 𝑉𝐿 , then every 𝐿 ∈ 𝑉𝐿 is an invariant of𝑀 .

Proof. By Lemma 4.5, the conjunction of all lemmas in a valid proof graph is an inductive

invariant, and for any set of predicates, if their conjunction is an invariant of𝑀 , then each conjunct

must be an invariant of𝑀 . □

Note on Cycles and Subgraphs. Note that the definition of proof graph validity does not imply

any restriction on cycles in a valid inductive proof graph. For example, a proof graph that is a pure

𝑘-cycle can be valid. For example, consider a simple ring counter system with 3 state variables, 𝑎, 𝑏,

and 𝑐 , where a single value gets passed from 𝑎 to 𝑏 to 𝑐 and exactly one variable holds the value at

any time. An inductive invariant establishing the property that 𝑎 always has a well-formed value

will consist of 3 properties that form a 3-cycle, each stating that 𝑎,𝑏 and 𝑐’s state are, respectively,

always well-formed.

Also note that based on the above validity definition, any subgraph of an inductive proof graph

can also be considered valid, if it meets the necessary conditions. Thus, in combination with

Theorem 4.6 this implies that, even if a particular proof graph is not valid, there may be subgraphs

that are valid and, therefore, can be used to infer that a subset of lemmas in the overall graph are

valid invariants.

5 INTERACTIVE SAFETY VERIFICATION
Having formalized the inductive proof graph structure, we now describe our proof methodology,

inductive proof decomposition, which is based around incremental construction of an inductive

proof graph, with integration of localized counterexample guidance.



Interactive Safety Verification of Distributed Protocols by Inductive Proof Decomposition 13

Procedure 1 High level steps of our interactive inductive invariant development procedure.

1: Inputs: Transition system𝑀 , invariant 𝑆 .

2: Initialization:
3: 𝑉𝐿 ← {𝑆 }
4: 𝑉𝐴 ← {𝑆 } × {𝐴1, . . . , 𝐴𝑘 }
5: 𝐸 ← ∅
6: 𝐺 ← (𝑉𝐿 ∪𝑉𝐴, 𝐸)
7: procedure IndProofDecomp
8: if all lemmas𝑉𝐿 of𝐺 are locally valid then
9: return𝐺 , a valid inductive proof graph.

10: else
11: Choose some (𝐿,𝐴) ∈ 𝑉𝐴 such that (𝐿,𝐴) is not locally valid.

12: Analyze a CTI 𝑋 of node (𝐿,𝐴) , develop a lemma 𝐿𝑛𝑒𝑤 that eliminates 𝑋 and update𝐺 as:

13: 𝑉𝐿 ← 𝑉𝐿 ∪ {𝐿𝑛𝑒𝑤 }
14: 𝑉𝐴 ← 𝑉𝐴 ∪ ({𝐿𝑛𝑒𝑤 } × {𝐴1, . . . , 𝐴𝑘 })
15: 𝐸 ← 𝐸 ∪ {(𝐿𝑛𝑒𝑤 , (𝐿,𝐴)) }
16: goto Line 8.

17: end if
18: end procedure

5.1 Interactive Verification Procedure
Our high level interactive safety verification procedure, for proving that 𝑆 is an invariant of

transition system𝑀 = (𝐼 ,𝑇 ) by finding an inductive invariant 𝐼𝑛𝑑 , centers around the incremental

construction of an inductive proof graph, working backwards from the target safety property, 𝑆 .

That is, we begin with an inductive proof graph (𝑉𝐿 ∪ 𝑉𝐴, 𝐸) where 𝑉𝐿 = {𝑆},𝑉𝐴 = {𝑆} ×
{𝐴1, . . . , 𝐴𝑘 }, and 𝐸 = ∅. From here, the graph is extended incrementally by developing support

lemmas and adding support edges from these lemmas to action nodes that are not yet locally valid in

the current graph. This is described more precisely in Procedure 1. Note there that, in line 12, 𝐿𝑛𝑒𝑤
may be an existing lemma in the graph, in which case only 𝐸 will be modified in the subsequent

steps. Note also that, as mentioned in Section 2, we assume access to bounded verification tools for

checking invariants that are added as new lemmas to an inductive proof graph (e.g., BMC [4]). A

sample progression of this procedure for a concrete protocol is illustrated in Figure 4, as explained

previously in Section 2.2.

In the following section we describe key features of this procedure that are enabled by the

inductive proof graph structure, centered around localized counterexample guidance and our slicing
technique that can be applied at each action node of a proof graph.

5.2 Localized Counterexample Guidance
Managing and analyzing counterexamples to induction (CTIs) is a key aspect of an inductive safety

verification methodology that relies on machine assistance in the form of induction checks. Our

approach takes advantage on the compositional structure of an inductive proof graph to scope

induction counterexamples to action nodes of the proof graph. Specifically, if an action node (𝐿,𝐴)
is not locally valid in the current proof graph, then we associate with that node CTIs which are

violations of the associated proof obligation shown in Formula 6.

This provides a user the ability to consider counterexamples in the particular scope of an

action and lemma pair, without considering them in the global scope of all lemmas developed so

far, as illustrated previously in the example shown in Figure 4. In addition, this counterexample

localization enables a projection-based abstraction of presented counterexamples that we refer to

as counterexample slicing, which we formalize in the following section.



14 William Schultz, Edward Ashton, Heidi Howard, and Stavros Tripakis

Counterexample Slicing. When considering an action node (𝐿,𝐴), any support lemmas for this node

must, to a first approximation, refer only to state variables that appear in either 𝐿 or 𝐴. We can

make use of this general idea to compute a variable slice for counterexamples presented at each

node. That is, we remove from consideration any state variables that are irrelevant for establishing

a valid support set for that node. Intuitively, the variable slice of an action node (𝐿,𝐴) can be

understood as the union of: (1) the set of all variables appearing in the precondition of 𝐴, (2) the

set of all variables appearing in the definition of lemma 𝐿, (3) for any variables in 𝐿, the set of all

variables upon which the update expressions of those variables depend.

More precisely, our slicing computation at each action node is based on the following static

analysis of a lemma and action pair (𝐿,𝐴). First, letV be the set of all state variables in our system,

and letV ′ refer to the primed, next-state copy of these variables. For an action node (𝐿,𝐴), we
have 𝐿 ∧𝐴⇒ 𝐿′ as its initial inductive proof obligation. As noted in Section 3, we consider actions

to be written in guarded action form, so they can be expressed as 𝐴 = 𝑃𝑟𝑒 ∧ 𝑃𝑜𝑠𝑡 , where 𝑃𝑟𝑒 is a
predicate over a set of current state variables, denoted 𝑉𝑎𝑟𝑠 (𝑃𝑟𝑒) ⊆ V , and 𝑃𝑜𝑠𝑡 is a conjunction

of update expressions of the form 𝑥 ′𝑖 = 𝑓𝑖 (D𝑖 ), where 𝑥 ′𝑖 ∈ V ′ and 𝑓𝑖 (D𝑖 ) is an expression over a

subset of current state variables D𝑖 ⊆ V .

Definition 5.1. For an action 𝐴 = 𝑃𝑟𝑒 ∧ 𝑃𝑜𝑠𝑡 and variable 𝑥 ′𝑖 ∈ V ′ with update expression 𝑓𝑖 (D𝑖 )
in 𝑃𝑜𝑠𝑡 , we define the cone of influence of 𝑥 ′𝑖 , denoted 𝐶𝑂𝐼 (𝑥 ′𝑖 ), as the variable set D𝑖 . For a set of

primed state variables X = {𝑥 ′
1
, . . . , 𝑥 ′

𝑘
}, we define 𝐶𝑂𝐼 (X) simply as 𝐶𝑂𝐼 (𝑥 ′

1
) ∪ · · · ∪𝐶𝑂𝐼 (𝑥 ′

𝑘
)

Now, if we let 𝑉𝑎𝑟𝑠 (𝑃𝑟𝑒) ⊆ V and 𝑉𝑎𝑟𝑠 (𝐿′) ⊆ V ′ be the sets of state variables that appear in
the expressions of 𝐿′ and 𝑃𝑟𝑒 , respectively, then we can formally define the notion of a slice as

follows.

Definition 5.2. For an action node (𝐿,𝐴), its variable slice is the set of state variables

𝑆𝑙𝑖𝑐𝑒 (𝐿,𝐴) = 𝑉𝑎𝑟𝑠 (𝑃𝑟𝑒) ∪𝑉𝑎𝑟𝑠 (𝐿) ∪𝐶𝑂𝐼 (𝑉𝑎𝑟𝑠 (𝐿′))

Based on this definition, we can now show that a variable slice is a strictly sufficient set of

variables to consider when developing a support set for an action node.

Theorem 5.3. For an action node (𝐿,𝐴), if a valid support set exists, there must exist one whose
expressions refer only to variables in 𝑆𝑙𝑖𝑐𝑒 (𝐿,𝐴).

Proof. Without loss of generality, the existence of a support set for (𝐿,𝐴) can be defined as the

existence of a predicate 𝑆𝑢𝑝𝑝 such that the formula

𝑆𝑢𝑝𝑝 ∧ 𝐿 ∧𝐴 ∧ ¬𝐿′ (7)

is unsatisfiable. As above, actions are of the form 𝐴 = 𝑃𝑟𝑒 ∧ 𝑃𝑜𝑠𝑡 , where 𝑃𝑜𝑠𝑡 is a conjunction of

update expressions, 𝑥 ′𝑖 = 𝑓𝑖 (D𝑖 ), so Formula 7 can be re-written as

𝑆𝑢𝑝𝑝 ∧ 𝐿 ∧ 𝑃𝑟𝑒 ∧ ¬𝐿′[𝑃𝑜𝑠𝑡] (8)

where 𝐿′[𝑃𝑜𝑠𝑡] represents the expression 𝐿′ with every 𝑥 ′𝑖 ∈ 𝑉𝑎𝑟𝑠 (𝐿′) substituted with the update

expression given by 𝑓𝑖 (D𝑖 ). From this, it is straightforward to show our original goal. If 𝐿 ∧ 𝑃𝑟𝑒 ∧
¬𝐿′[𝑃𝑜𝑠𝑡] is satisfiable, and there exists a 𝑆𝑢𝑝𝑝 that makes Formula 8 unsatisfiable, then clearly

𝑆𝑢𝑝𝑝 must only refer to variables that appear in 𝐿 ∧ 𝑃𝑟𝑒 ∧ ¬𝐿′[𝑃𝑜𝑠𝑡], which are exactly the set of

variables in 𝑆𝑙𝑖𝑐𝑒 (𝐿,𝐴).
□



Interactive Safety Verification of Distributed Protocols by Inductive Proof Decomposition 15

6 EMPIRICAL EVALUATION
To evaluate our technique, we developed inductive invariants for several distributed protocols of

varying complexity, including development of inductive invariants for two large scale protocol

specifications of the Raft [38] and Zab [23] distributed consensus protocols. Overall, the core

goals of our evaluation were to (1) understand the empirical structure of inductive proof graphs

for real world protocols, (2) evaluate the effectiveness of our proof technique for developing

inductive invariants of large protocols, and (3) examine how these proof graphs provide insight

into understanding the intuitive structure of an inductive proof.

We describe our experience developing proofs for these protocols using our technique and

provide metrics on the compositional structure of these protocols and their invariants. Note that

all code for our implementations and protocol benchmarks described below is available in the

supplementary material for this paper, along with instructions for running the tool and viewing

and checking our proofs.

Implementation and Setup. We implemented our technique in a tool, Indigo, that provides a

graphical user interface for the interactive development of inductive proof graphs. Indigo is

implemented in Python and accepts systems specified in the TLA+ specification language [30]. The

tool allows a user to view a current inductive proof graph, with visual coloring representing the

state of each lemma and action node. A user can then choose to focus on a particular action node,

and a subset of CTIs associated with that node are presented. Slicing is applied automatically to

the presented CTIs based on a static analysis of the protocol specification, and the interface also

provides a way to for a user to dynamically add support edges and new lemmas to the graph.

Internally, Indigo tool uses a combination of the TLC model checker [52] and the Apalache

symbolic model checker [27] for checking inductive proof obligations and generating counterex-

amples to induction. Note that TLC is an explicit state model checker, so cannot produce proofs of

inductive invariants for protocols of nontrivial size, but can generate counterexamples to induction

for finite protocol instances using a randomized search technique [31]. Apalache generates an SMT

[1] encoding of a TLA+ specification which is passed internally to the Z3 solver [9]. Apalache can

generate CTIs and also produce proofs of inductive invariants for bounded protocol parameters. In

our experience, TLC can, in some cases, be more efficient at generating CTIs than Apalache, so we

found both tools useful in our implementation. All experiments and proof checking results below

were collected using Apalache version 0.44.0 and TLC version 2.15 running on a 2020 M1 Macbook

Air.

Protocol Benchmarks. We used our tool to develop inductive invariants for establishing core

safety properties of 5 distributed protocol specifications. These protocols are summarized in Table

1, along with various specification and proof statistics. All formal specifications of these protocols

are defined in TLA+, some of which existed from prior work and some of which we developed

or modified based on existing specifications. All protocols are parameterized (e.g., in the number

of nodes/servers, epochs, etc.), and we completed our inductive invariant development efforts for

fixed parameter bounds, which allows the inductive proof obligations to be checked by Apalache.

We chose to use fixed parameter bounds to make proof obligation checking more feasible, and since

we were focused mainly on exploring the inductive invariant development process and not on the

process of proving a developed inductive invariant.

Of the protocols tested, we consider the following 3 to be of medium complexity:

• SimpleConsensus: An abstract consensus protocol where nodes vote to elect a leader which

then decides on a value, as discussed previously in Section 2. Parameters used include the set

of nodes, Node = {𝑛1, 𝑛2, 𝑛3, 𝑛4}, and the set of values, Value = {𝑣1, 𝑣2, 𝑣3, 𝑣4}.



16 William Schultz, Edward Ashton, Heidi Howard, and Stavros Tripakis

Protocol Variables Actions LOC (spec/pf) Lemmas Median slice/indeg Check (s)

SimpleConsensus 6 5 77/ 51 8 2 (0.33) / 1 72

TwoPhase 5 7 179/ 129 16 3 (0.60) / 1 184

AbstractRaft 4 6 220/ 138 10 3 (0.75) / 1 969

AsyncRaft 12 15 608/ 553 39 5 (0.42) / 2 6592

Zab 23 16 1221/ 774 33 9 (0.39) / 1 1101

Table 1. Protocols used in evaluation and metrics on their specifications and inductive proof graphs. LOC is
the number of lines of TLA+ code for defining the specification (spec) and inductive proof (pf), respectively.
Median slice / indeg gives the median size of all variable slices in the complete inductive proof graph, and its
proportion of the total state variables / the median number of total incoming edges to action nodes. Check
(s) is the time to check the completed proof using Apalache, in seconds. The current Zab proof graph was
checked using TLC.

• TwoPhase: A specification of the two-phase commit protocol [32], where a transaction man-

ager coordinates a set of resource managers to consistently agree on a commit or abort
decision. The safety property checked is TCConsistent, which states that two resource man-

agers cannot have conflicting commit or abort decisions. Parameters used include the set of

resource managers 𝑅𝑀 = {𝑠1, 𝑠2, 𝑠3, 𝑠4}.
• AbstractRaft: An abstract specification of the Raft consensus protocol [38], which abstracts

away low level message passing details. Safety property is StateMachineSafety, which states

that log entries committed at the same indices must be the same. Parameters used include

the number of servers, Server = {𝑠1, 𝑠2, 𝑠3, 𝑠4}, the maximum length of logs, MaxLen = 3, and

the maximum number of terms, MaxTerm = 3.

The 2 additional protocols are of significantly larger complexity:

• AsyncRaft: An industrial scale specification of the Raft consensus protocol [38]. Our speci-

fication is based on [37, 46], and models asynchronous message passing between all nodes

and fine-grained local state. The safety property checked is NoLogDivergence, which states

that if a commit index covers an entry on different nodes, the entries must be consistent.

Parameters used include the number of servers, Server = {𝑠1, 𝑠2, 𝑠3}, the maximum length of

logs, MaxLen = 3, and the maximum number of terms, MaxTerm = 3.

• Zab: An industrial scale specification of the Zab replication protocol [23], which is a totally

ordered atomic broadcast protocol for implementing primary backup replication used in

Apache Zookeeper [19]. The protocol specification used is based on prior formalization efforts

that have been merged into the official Zookeeper code repository [39]. The safety property

checked is PrefixConsistency, which states that if entries are committed at the same index

across nodes, then the entries must be the same. Parameters used include the number of

servers, Server = {𝑠1, 𝑠2, 𝑠3}, the maximum length of logs,MaxHistLen = 1, and the maximum

number of epochs MaxEpoch = 2.

The 2 large protocol specifications are both of a complexity significantly greater than those tested

in recent automated invariant inference techniques, so we consider them as the most relevant

benchmarks for evaluating interactive inductive invariant development techniques.

6.1 Results and Discussion
Table 1 shows various statistics about the protocols we tested, including the number of state

variables, number of actions, lines of code (LOC) in the TLA+ protocol specifications and proofs,

number of lemmas in each proof graph, and the size of variable slices. We discuss the structure of



Interactive Safety Verification of Distributed Protocols by Inductive Proof Decomposition 17

TCConsistent

𝑅𝑀𝐶ℎ𝑜𝑜𝑠𝑒𝐴𝑏𝑜𝑟𝑡

𝑅𝑀𝑅𝑐𝑣𝐶𝑜𝑚𝑚𝑖𝑡𝑀𝑠𝑔

𝑅𝑀𝑅𝑐𝑣𝐴𝑏𝑜𝑟𝑡𝑀𝑠𝑔

RMCommittedImpliesNoRMsWorking

𝑅𝑀𝑅𝑐𝑣𝐶𝑜𝑚𝑚𝑖𝑡𝑀𝑠𝑔 𝑅𝑀𝑅𝑐𝑣𝐴𝑏𝑜𝑟𝑡𝑀𝑠𝑔

RMCommittedImpliesNoAbortMsg

𝑅𝑀𝑅𝑐𝑣𝐶𝑜𝑚𝑚𝑖𝑡𝑀𝑠𝑔 𝐴5

𝐿0

𝑅𝑀𝑅𝑐𝑣𝐶𝑜𝑚𝑚𝑖𝑡𝑀𝑠𝑔

𝐿1

𝐿2

𝑅𝑀𝑅𝑐𝑣𝐴𝑏𝑜𝑟𝑡𝑀𝑠𝑔𝑅𝑀𝑅𝑐𝑣𝐴𝑏𝑜𝑟𝑡𝑀𝑠𝑔

𝐴5 𝐴6

𝐿3 𝐿4

𝐿5

𝐴6

𝐿6

𝐴6

𝑅𝑀𝐶ℎ𝑜𝑜𝑠𝑒𝐴𝑏𝑜𝑟𝑡𝑅𝑀𝑅𝑐𝑣𝐴𝑏𝑜𝑟𝑡𝑀𝑠𝑔

𝐿7

𝐴0

𝐿8

𝐴0

𝐿9

RMAbortedImpliesNoCommitMsg

𝑅𝑀𝐶ℎ𝑜𝑜𝑠𝑒𝐴𝑏𝑜𝑟𝑡

𝐿10

𝐴6

𝐿11

(a) TwoPhase inductive proof graph.

StateMachineSafety

𝐶𝑜𝑚𝑚𝑖𝑡𝐸𝑛𝑡𝑟𝑦

CommittedEntryIsOnQuorum

𝐵𝑒𝑐𝑜𝑚𝑒𝐿𝑒𝑎𝑑𝑒𝑟

𝑅𝑜𝑙𝑙𝑏𝑎𝑐𝑘𝐸𝑛𝑡𝑟𝑖𝑒𝑠

LaterLogsHaveEarlierCommitted

𝐶𝑙𝑖𝑒𝑛𝑡𝑅𝑒𝑞𝑢𝑒𝑠𝑡

𝐺𝑒𝑡𝐸𝑛𝑡𝑟𝑖𝑒𝑠

𝐶𝑜𝑚𝑚𝑖𝑡𝐸𝑛𝑡𝑟𝑦

LeaderCompleteness

𝐶𝑜𝑚𝑚𝑖𝑡𝐸𝑛𝑡𝑟𝑦

TermsMonotonic

𝐶𝑙𝑖𝑒𝑛𝑡𝑅𝑒𝑞𝑢𝑒𝑠𝑡

PrimaryTermGTELogTerm

𝐵𝑒𝑐𝑜𝑚𝑒𝐿𝑒𝑎𝑑𝑒𝑟

LogEntryImpliesSafeAtTerm

𝐵𝑒𝑐𝑜𝑚𝑒𝐿𝑒𝑎𝑑𝑒𝑟

𝐶𝑙𝑖𝑒𝑛𝑡𝑅𝑒𝑞𝑢𝑒𝑠𝑡

QuorumsSafeAtTerms

𝐵𝑒𝑐𝑜𝑚𝑒𝐿𝑒𝑎𝑑𝑒𝑟

UniformLogEntries

𝐶𝑙𝑖𝑒𝑛𝑡𝑅𝑒𝑞𝑢𝑒𝑠𝑡

𝐺𝑒𝑡𝐸𝑛𝑡𝑟𝑖𝑒𝑠

LogMatching

𝐶𝑙𝑖𝑒𝑛𝑡𝑅𝑒𝑞𝑢𝑒𝑠𝑡

PrimaryHasOwnEntries

𝐶𝑙𝑖𝑒𝑛𝑡𝑅𝑒𝑞𝑢𝑒𝑠𝑡

OnePrimaryPerTerm

(b) AbstractRaft inductive proof graph.

Fig. 8. Inductive proof graphs for medium size protocols. Top level safety properties shown in green.

the developed proof graphs and qualitative aspects of our experience developing these proofs in

more detail below.

Medium Protocols. The completed inductive proof graphs for AbstractRaft and TwoPhase, respec-
tively, can be seen in Figures 8a and 8b, and the proof graph for SimpleConsensus was shown
previously, in Figure 5. The full graphs can be viewed using our interactive tool provided in our

supplementary material.

In general, though these proof graphs are for smaller protocols, they generally confirm our

intuition that these proof graphs are useful for understanding the structure of an inductive proof and

guiding its development. Even for protocols of this size, we found that maintenance of this structure

coupled with automatic counterexample slicing is a significant aid, and allowed us to develop these

inductive invariants with much more ease and efficiency. In SimpleConsensus, for example, the

median slice proportion of 0.33, indicating that most slices present a significantly reduced amount

of information, and the graph admits a clear tree-like decomposition. Our experience for TwoPhase
was similar, and also benefits from slicing, with a median slice proportion of 0.6.

The graph forAbstractRaft similarly admits a relatively tree-like decomposition, and also provides

insight on how lemmas of the protocol relate to each other. For example, we can observe an

induction cycle related to establishment of key properties about committed log entries. This cycle

flows from CommittedEntryIsOnQuorum to LeaderCompleteness via action BecomeLeader, then to

LaterLogsHaveEarlierCommitted via action ClientRequest, then back to CommittedEntryIsOnQuorum
via RollbackEntries. Generally, during development of these inductive proofs, we found this structure

helpful to guide our reasoning as it makes the current logical structure of the developed proof

explicit.

Large Protocols. As an exploration of our technique for larger scale proof efforts, we applied it first

to AsyncRaft, a specification of Raft at a considerably lower level of abstraction e.g., it includes

asynchronous message passing and fine-grained local state, akin to the detail level provided in

the original Raft TLA+ specification [37]. We are also aware of no prior inductive invariant that

existed for a TLA+ specification of Raft at this level of complexity and abstraction level. Figure 9

shows our completed inductive proof graph for AsyncRaft. Our experience developing this proof



18 William Schultz, Edward Ashton, Heidi Howard, and Stavros Tripakis

NoLogDivergence

𝐴6 𝐴7
𝐴𝑐𝑐𝑒𝑝𝑡𝐴𝐸

𝐿𝑒𝑎𝑟𝑛𝐶𝑜𝑚𝑚𝑖𝑡

𝐿0

𝐿𝑒𝑎𝑟𝑛𝐶𝑜𝑚𝑚𝑖𝑡

LogMatching

𝐴𝐸

𝐴𝐸

𝐴𝐸

𝐴14

𝐴6

𝐴𝑐𝑐𝑒𝑝𝑡𝐴𝐸

PrimaryHasEntriesItCreated

𝐴𝐸

𝐴5𝐴6

𝐴𝑐𝑐𝑒𝑝𝑡𝐴𝐸

OnePrimaryPerTerm

𝐴5

𝐿1

𝐴6

𝐴𝐸

𝐴5 𝐴10

𝐿2

𝐴0

𝐴10

𝐿3

𝐴4 𝐴5

{votesGranted,votedFor,state,currentTerm}

𝐴5

𝐴10

𝐿4

𝐴10

𝐴0

𝐴10𝐴9

𝐿5

𝐴9

𝐴10

𝐿6

𝐿7

𝐿8

𝐿9

𝐿10

𝐴𝐸

𝐴0

𝐴10

𝐴𝑐𝑐𝑒𝑝𝑡𝐴𝐸

𝐿11

𝐴𝐸𝐴0 𝐴9

𝐴6

𝐴𝑐𝑐𝑒𝑝𝑡𝐴𝐸

QuorumsSafeAtTerms

𝐴9𝐴𝐸

𝐿12

𝐴9𝐴9

𝐿13

𝐴0

𝐴5

𝐿14

𝐴6

𝐴𝐸

𝐴0

𝐿15

𝐴0

𝐴9

𝐿16

𝐿17

𝐴𝐸

𝐴𝑐𝑐𝑒𝑝𝑡𝐴𝐸

𝐿18

𝐴10

𝐿19

𝐴5

𝐿20

LogMatchingAppendEntries

𝐴6

𝐴𝑐𝑐𝑒𝑝𝑡𝐴𝐸

𝐿21

𝐿22

LeaderMatchIndexValid

𝐴7

𝐴6

{matchIndex,log,state,currentTerm}

LeaderMatchIndexBound

𝐴14

{matchIndex,log,state,currentTerm}

LeaderMatchIndexValidAppendEntries

𝐴5

𝐴𝑐𝑐𝑒𝑝𝑡𝐴𝐸

𝐿23

𝐴5

𝐿24

𝐴10

𝐿25

𝐿26

𝐴𝑐𝑐𝑒𝑝𝑡𝐴𝐸

𝐿27

CommitIndexCoveredOnQuorum𝐿28

(a) AsyncRaft inductive proof graph.

NoLogDivergence

𝐴6 𝐴7
𝐴𝑐𝑐𝑒𝑝𝑡𝐴𝐸

𝐿𝑒𝑎𝑟𝑛𝐶𝑜𝑚𝑚𝑖𝑡 ✗

𝐿0

𝐿𝑒𝑎𝑟𝑛𝐶𝑜𝑚𝑚𝑖𝑡 ✗

𝐿𝑒𝑎𝑟𝑛𝐶𝑜𝑚𝑚𝑖𝑡 ✗

LogMatching

𝐴𝐸

𝐴𝐸

𝐴𝐸

𝐴14

𝐴6

𝐴𝑐𝑐𝑒𝑝𝑡𝐴𝐸

PrimaryHasEntriesItCreated

𝐴𝐸

𝐴5𝐴6

𝐴𝑐𝑐𝑒𝑝𝑡𝐴𝐸

OnePrimaryPerTerm

𝐴5

𝐿1

𝐴6

𝐴𝐸

𝐴5 𝐴10

𝐿2

𝐴0

𝐴10

𝐿3

𝐴4 𝐴5

{votesGranted,state,currentTerm,votedFor}

𝐴5

𝐴10

𝐿4

𝐴10

𝐴0

𝐴10

𝐴9

𝐿5

𝐴9

𝐴10

𝐿6

𝐿7

𝐿8

𝐿9

𝐿10

𝐴𝐸

𝐴0

𝐴10

𝐴𝑐𝑐𝑒𝑝𝑡𝐴𝐸

𝐿11

𝐴𝐸𝐴0 𝐴9

𝐴6

𝐴𝑐𝑐𝑒𝑝𝑡𝐴𝐸

QuorumsSafeAtTerms

𝐴9𝐴𝐸

𝐿12

𝐴9𝐴9

𝐿13

𝐴0

𝐴5

𝐿14

𝐴6

𝐴𝐸

𝐴0

𝐿15

𝐴0

𝐴9

𝐿16

𝐿17

𝐴𝐸

𝐴𝑐𝑐𝑒𝑝𝑡𝐴𝐸

𝐿18

𝐴10

𝐿19

𝐴5

𝐿20

LogMatchingAppendEntries

𝐴6

𝐴𝑐𝑐𝑒𝑝𝑡𝐴𝐸

𝐿21

𝐿22

LeaderMatchIndexValid

𝐴7

𝐴6

{state,currentTerm,log,matchIndex}

LeaderMatchIndexBound

𝐴14

{state,currentTerm,log,matchIndex}

LeaderMatchIndexValidAppendEntries

𝐴5

𝐴𝑐𝑐𝑒𝑝𝑡𝐴𝐸

𝐿23

𝐴5

𝐿24

𝐴10

𝐿25

𝐿26

𝐴𝑐𝑐𝑒𝑝𝑡𝐴𝐸

𝐿27

CommitIndexCoveredOnQuorum𝐿28

(b) Subgraph broken by protocol change.

Fig. 9. AsyncRaft inductive proof graph, and excerpt of affected subgraph after breaking protocol change.
Variable slices are shown at a subset of nodes, and induction cycle is highlighted in yellow. AE action nodes
represent an AppendEntries action (a leader sends entries), analogously for AcceptAE. LearnCommit actions
represent servers learning of a new commit index.

graph provided several insights into understanding the effectiveness of our technique, and also in

understanding the structure of such a proof graph for a large distributed protocol.

Overall, we found our technique effective at making the proof process efficient and understand-

able for a human verifier, by providing a formal structure to the large scale proof and accelerating

CTI analysis by slicing and localized reasoning. We were able to develop such an inductive invariant

in approximately 3 human weeks of effort, which we found to be a productive pace for an invariant

of this size and protocol of this complexity. Other verification efforts of this type note, for example,

an inductive invariant development burden of 1-2 human months [42], even for a protocol with

a smaller invariant than AsyncRaft. We found that the decomposition provided by our technique

enabled effective local reasoning in many cases. For example, comparing the slices near Leader-
MatchIndexValid and LeaderMatchIndexBound nodes to QuorumsSafeAtTerms, in a relatively distinct

sub-component of the graph, we can see that the slice sets refer to relatively disjoint subsets of

variables, supporting our hypothesis that the compositional structure of the proof graph allows for

localized reasoning on different aspects of the protocol.

In addition to the efficiency of invariant development, we also found value in the developed

proof artifact beyond establishing correctness. For example, during the development of the proof,



Interactive Safety Verification of Distributed Protocols by Inductive Proof Decomposition 19

we found it helpful to observe various patterns that arise in the proof graph structure. In particular,

we observed the various types of induction cycles that arise in this graph, especially those that arise

in many places due to the message passing nature of this protocol. For example, we can observe

the cycle highlighted in Figure 9 where LogMatching serves as a support lemma of LogMatching-
InAppendEntriesMsgs via the AppendEntries action, and LogMatchingInAppendEntriesMsgs then
serves as a support lemma of LogMatching via the AppendEntriesResponse action, forming this

induction cycle. These cycles would be difficult to observe in a standard inductive invariant, but

are apparent in our proof graph structure, and represent a common pattern where invariants about

protocol state must hold on both local state and also on the state of messages that are sent over the

network. Logical dependencies between lemmas also become much clearer in our graph structure.

For example, one can observe the position of the OnePrimaryPerTerm lemma, which is a core lemma

of Raft stating that there must be a unique leader per term, and its ancestral relationship to lemmas

like PrimaryHasEntriesItCreated and LogMatching.
We also found it valuable to examine how changes to a protocol affect such a graph, and how

these changes may be used to help evolve a protocol or proof. Figure 9b shows our AsyncRaft proof
graph after we introduced a breaking change to the specification, modifying a key precondition on

when servers are able to learn of a new commit index information. This breaks the top-level safety

property NoLogDivergence, but we can observe that this fault manifests in a localized manner in

the proof graph, with respect to the broken LearnCommit action nodes that are colored orange in

the graph. A large subgraph of the original graph remains valid, and so, as discussed in Section

4, a large percentage of lemmas in the graph can be seen to remain as invariants of the modified

protocol. We view this as a potential means to make repair and evolution of a protocol and its proof

a more tractable task.

The inductive proof graph for our other large-scale protocol evaluation, Zab, is shown in Figure

10. We do not give a full analysis here, but we show the graph to give a high level sense of its

structure. We note that due to encoding inefficiencies with Apalache for our specification, we

verified the current developed inductive proof graph probabilistically using TLC, for the parameters

listed above. In general, we found the Zab proof structure somewhat more difficult to develop

e.g., there were a greater number of long range dependencies between lemmas, and many lemmas

required support via larger sets of actions. It is not clear whether this is due to the underlying

protocol itself or the particular specification or lemmas developed.

7 RELATEDWORK
Interactive and Compositional Verification. There are two recent works that are most similar to

ours in scope and approach, namely, the Ivy system [41] and the work on exploiting modularity

for decidability presented in [44]. Our approach bears similarities to these other two verification

techniques, but there are a number of key differences in terms of goals and methodologies.

One main focus of Ivy is on the modeling language, with a goal of making it easy to represent

systems in a decidable fragment of first order logic, so as to ensure verification conditions always

provide some concrete feedback in the form of counterexamples. They also discuss an interactive

approach for generalization from counterexamples, that has similarities to the UPDR approach used

in extensions of IC3/PDR [24]. In contrast, our work is primarily focused on different concerns e.g.,

we focus on compositionality as a means to provide an efficient and scalable proof methodology,

and as a means to produce a more interpretable proof artifact, in addition to allowing for localized

counterexample reasoning. We also view decidable modeling as an orthogonal component of the

verification process that could be complementary to our approach.

The goals of the work in [44] are more similar to our own, in that they aim to use a particular

type of compositional reasoning to exploit decidable subproblems when possible. This is perhaps



20 William Schultz, Edward Ashton, Heidi Howard, and Stavros Tripakis

PrefixConsistency

𝐴7

𝐴8

𝐴9 𝐴10𝐴14𝐴15

𝐿0

𝐴8

𝐴8

𝐴8

𝐴14

𝐴8

𝐴8 𝐴8

𝐴8

𝐴8

𝐿1

𝐴15

𝐴15

𝐴15

𝐴15

𝐴14

𝐿2

𝐴14

𝐴14

𝐴13

𝐿3

𝐴13𝐴13 𝐴13

𝐴12

𝐿4

𝐴3𝐴7

𝐿5

𝐴7

𝐴6

𝐴7

𝐴9

𝐴6 𝐴10

𝐿6

𝐴6

𝐴6

𝐿7

𝐴10

𝐴10

𝐴10

𝐴10

𝐴10

𝐿8

TxnZxidsUniqueHistoriesAndMessages

𝐴0 𝐴1 𝐴7𝐴11 𝐴14

𝐴7

𝐴11

𝐿9

𝐴11 𝐴13

𝐿10

𝐴13

𝐴13

UniqueEstablishedLeader

𝐴9

𝐴7

𝐿11

𝐴7

TwoLeadersCantHaveSameCEPOCH

𝐴0 𝐴1

𝐴5

𝐿12

𝐴3

𝐴5

𝐿13

𝐴5

𝐴5

𝐿14

𝐿15

𝐿16

𝐿17

𝐿18

𝐴7

𝐴7𝐴7𝐴7

𝐴0𝐴1

𝐴8

𝐴11𝐴13

𝐿19

𝐴7

𝐴11𝐴13

𝐴11

𝐴11𝐴14

𝐴8

𝐿20

𝐿21

𝐴9

𝐿22 𝐿23

𝐴9

𝐿24

𝐴6

𝐿25

𝐴5

𝐿26

CommittedEntryExistsOnQuorum

CommittedEntryExistsInLeaderHistory

Fig. 10. Zab inductive proof graph.

closest to our approach in that it tries to exploit decomposition in the verification and proof process,

but the decomposition notions and the way they are used are somewhat different between our work

and theirs. Our goal is to define a compositional structure that is integrated into the counterexample

guidance process, while also producing a single, inductive proof artifact upon completion. In future

it would be interesting, however, to consider whether our notion of decomposition based on the

inductive proof graph structure admits a similar kind of “decidable subproblem" property that is

exploited in [44].

Concurrent Program Analysis. Our techniques presented in this paper bear similarities to prior

approaches used in the proofs and analysis of concurrent programs. Our notion of inductive

proof graphs is similar in nature to the inductive data flow graph concept presented in [10]. That

work, however, is focused specifically on the verification of multi-process concurrent programs,

and did not generalize the notions to a distributed setting. The procedures for verification and

counterexample analysis are also different between our approach and theirs.

Our counterexample slicing technique is similar to a cone-of-influence reduction [13], as well as

other program slicing techniques [45]. It also shares some concepts with other path-based program

analysis techniques that incorporate slicing techniques [21, 22]. In our case, however, we apply it

at the level of a single protocol action and target lemma, particularly for the purpose of CTI state

projection.

Automated Inductive Invariant Inference. There are several recently published techniques that

attempt to solve the problem of fully automated inductive invariant inference for distributed

protocols, including IC3PO [11], [5], SWISS [15] and DistAI [51]. These tools, however, provide

little feedback when they fail on a given problem, and the large scale protocols we presented in

this paper (AsyncRaft and Zab), are of a complexity considerably higher than what modern tools in

this area can solve.

Our techniques for managing large scale proof structures also bear some similarities with

approaches developed for managing proof obligation queues in IC3/PDR [2, 14]. In a sense, our

approach revolves around making the set of proof obligations and their dependencies explicit (and



Interactive Safety Verification of Distributed Protocols by Inductive Proof Decomposition 21

also incorporating action-based decomposition), which can be a key factor in tuning of IC3/PDR,

which often has many non-deterministic choices throughout execution.

8 CONCLUSIONS AND FUTUREWORK
We presented inductive proof decomposition, a new methodology for human-guided development

of inductive invariants for large-scale protocol safety verification. In future, we are interested

in exploring approaches enabled by this technique and proof structure e.g., integrating more

automation by applying local syntax-guided synthesis techniques to proof graph nodes. We are

also interested in understanding how these proof graph structures might be useful as a part of

other automated model checking engines, and in understanding the structure of these proof graphs

for additional real world protocols.

REFERENCES
[1] Barrett, C., and Tinelli, C. Satisfiability Modulo Theories. Springer International Publishing, Cham, 2018, pp. 305–343.

[2] Berryhill, R., Ivrii, A., Veira, N., and Veneris, A. Learning support sets in IC3 and Quip: The good, the bad, and the

ugly. In 2017 Formal Methods in Computer Aided Design (FMCAD) (2017), IEEE, pp. 140–147.
[3] Bertot, Y., and Castéran, P. Interactive theorem proving and program development: Coq’Art: the calculus of inductive

constructions. Springer Science & Business Media, 2013.

[4] Biere, A., Cimatti, A., Clarke, E. M., Strichman, O., and Zhu, Y. Bounded model checking. Adv. Comput. 58 (2003),
117–148.

[5] Bradley, A. R. SAT-Based Model Checking without Unrolling. In Proceedings of the 12th International Conference
on Verification, Model Checking, and Abstract Interpretation (Berlin, Heidelberg, 2011), VMCAI’11, Springer-Verlag,

p. 70–87.

[6] Braithwaite, S., Buchman, E., Konnov, I., Milosevic, Z., Stoilkovska, I., Widder, J., and Zamfir, A. Formal

Specification and Model Checking of the Tendermint Blockchain Synchronization Protocol (Short Paper). In 2nd
Workshop on Formal Methods for Blockchains (FMBC 2020) (2020), Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

[7] Choi, J., Vijayaraghavan, M., Sherman, B., Chlipala, A., and Arvind. Kami: A platform for high-level parametric

hardware specification and its modular verification. Proc. ACM Program. Lang. 1, ICFP (aug 2017).

[8] Corbett, J. C., Dean, J., Epstein, M., Fikes, A., Frost, C., Furman, J., Ghemawat, S., Gubarev, A., Heiser, C.,

Hochschild, P., Hsieh, W., Kanthak, S., Kogan, E., Li, H., Lloyd, A., Melnik, S., Mwaura, D., Nagle, D., Quinlan,

S., Rao, R., Rolig, L., Woodford, D., Saito, Y., Taylor, C., Szymaniak, M., and Wang, R. Spanner: Google’s

Globally-Distributed Database. In OSDI (2012).
[9] De Moura, L., and Bjørner, N. Z3: An efficient SMT solver. In International conference on Tools and Algorithms for

the Construction and Analysis of Systems (2008), Springer, pp. 337–340.
[10] Farzan, A., Kincaid, Z., and Podelski, A. Inductive Data Flow Graphs. In The 40th Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL ’13, Rome, Italy - January 23 - 25, 2013 (2013), R. Giacobazzi
and R. Cousot, Eds., ACM, pp. 129–142.

[11] Goel, A., and Sakallah, K. On Symmetry and Quantification: A New Approach to Verify Distributed Protocols. In

NASA Formal Methods: 13th International Symposium, NFM 2021, Virtual Event, May 24–28, 2021, Proceedings (Berlin,
Heidelberg, 2021), Springer-Verlag, p. 131–150.

[12] Goel, A., and Sakallah, K. A. Towards an Automatic Proof of Lamport’s Paxos. 2021 Formal Methods in Computer
Aided Design (FMCAD) (2021), 112–122.

[13] Gordon, M. J., Kaufmann, M., and Ray, S. The Right Tools for the Job: Correctness of Cone of Influence Reduction

Proved Using ACL2 and HOL4. J. Autom. Reason. 47, 1 (jun 2011), 1–16.

[14] Gurfinkel, A., and Ivrii, A. Pushing to the top. 2015 Formal Methods in Computer-Aided Design (FMCAD) (2015),
65–72.

[15] Hance, T., Heule, M., Martins, R., and Parno, B. Finding Invariants of Distributed Systems: It’s a Small (Enough)

World After All. In 18th USENIX Symposium on Networked Systems Design and Implementation (NSDI 21) (Apr. 2021),
USENIX Association, pp. 115–131.

[16] Hawblitzel, C., Howell, J., Kapritsos, M., Lorch, J. R., Parno, B., Roberts, M. L., Setty, S., and Zill, B. IronFleet:

Proving Practical Distributed Systems Correct. In Proceedings of the 25th Symposium on Operating Systems Principles
(New York, NY, USA, 2015), SOSP ’15, Association for Computing Machinery, p. 1–17.

[17] Holzmann, G. J. The model checker SPIN. IEEE Transactions on software engineering 23, 5 (1997), 279–295.
[18] Huang, D., Liu, Q., Cui, Q., Fang, Z., Ma, X., Xu, F., Shen, L., Tang, L., Zhou, Y., Huang, M., Wei, W., Liu, C., Zhang,

J., Li, J., Wu, X., Song, L., Sun, R., Yu, S., Zhao, L., Cameron, N., Pei, L., and Tang, X. TiDB: A Raft-Based HTAP



22 William Schultz, Edward Ashton, Heidi Howard, and Stavros Tripakis

Database. Proc. VLDB Endow. 13, 12 (aug 2020), 3072–3084.
[19] Hunt, P., Konar, M., Junqeira, F. P., and Reed, B. ZooKeeper: Wait-Free Coordination for Internet-Scale Systems.

In Proceedings of the 2010 USENIX Conference on USENIX Annual Technical Conference (USA, 2010), USENIXATC’10,
USENIX Association, p. 11.

[20] Hunt Jr, W. A., Kaufmann, M., Moore, J. S., and Slobodova, A. Industrial hardware and software verification with

acl2. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375, 2104 (2017),
20150399.

[21] Jaffar, J., Murali, V., Navas, J. A., and Santosa, A. E. Path-sensitive backward slicing. In Static Analysis: 19th
International Symposium, SAS 2012, Deauville, France, September 11-13, 2012. Proceedings 19 (2012), Springer, pp. 231–247.

[22] Jhala, R., and Majumdar, R. Path slicing. In Proceedings of the 2005 ACM SIGPLAN Conference on Programming
language Design and Implementation (2005), pp. 38–47.

[23] Junqeira, F. P., Reed, B. C., and Serafini, M. Zab: High-performance broadcast for primary-backup systems. In

2011 IEEE/IFIP 41st International Conference on Dependable Systems & Networks (DSN) (2011), IEEE, pp. 245–256.
[24] Karbyshev, A., Bjørner, N., Itzhaky, S., Rinetzky, N., and Shoham, S. Property-Directed Inference of Universal

Invariants or Proving Their Absence. J. ACM 64, 1 (mar 2017).

[25] Koenig, J. R., Padon, O., Immerman, N., and Aiken, A. First-Order Quantified Separators. In Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language Design and Implementation (2020), PLDI 2020, Association for

Computing Machinery, p. 703–717.

[26] Koenig, J. R., Padon, O., Shoham, S., and Aiken, A. Inferring Invariants with Quantifier Alternations: Taming the

Search Space Explosion. In Tools and Algorithms for the Construction and Analysis of Systems (Cham, 2022), D. Fisman

and G. Rosu, Eds., Springer International Publishing, pp. 338–356.

[27] Konnov, I., Kukovec, J., and Tran, T.-H. TLA+Model Checking Made Symbolic. Proc. ACM Program. Lang. 3, OOPSLA
(Oct 2019).

[28] Lamport, L. How to write a proof. The American mathematical monthly 102, 7 (1995), 600–608.
[29] Lamport, L. Paxos made simple. ACM SIGACT News (Distributed Computing Column) 32, 4 (Whole Number 121,

December 2001) (2001), 51–58.
[30] Lamport, L. Specifying Systems: The TLA+ Language and Tools for Hardware and Software Engineers. Addison-Wesley,

Jun 2002.

[31] Lamport, L. Using TLC to Check Inductive Invariance. http://lamport.azurewebsites.net/tla/inductive-invariant.pdf,

2018.

[32] Lampson, B., and Sturgis, H. Crash Recovery in a Distributed Data Storage System. Unpublished technical report,
Xerox Palo Alto Research Center (06 1979).

[33] Ma, H., Ahmad, H., Goel, A., Goldweber, E., Jeannin, J.-B., Kapritsos, M., and Kasikci, B. Sift: Using Refinement-

guided Automation to Verify Complex Distributed Systems. In USENIX Annual Technical Conference (2022).
[34] Manna, Z., and Pnueli, A. Temporal Verification of Reactive Systems: Safety. Springer-Verlag, Berlin, Heidelberg, 1995.
[35] Newcombe, C. Why Amazon Chose TLA+. In International Conference on Abstract State Machines, Alloy, B, TLA, VDM,

and Z (2014), Springer, pp. 25–39.

[36] Nipkow, T., Wenzel, M., and Paulson, L. C. Isabelle/HOL: a proof assistant for higher-order logic. Springer, 2002.
[37] Ongaro, D. Consensus: Bridging Theory and Practice. Doctoral thesis (2014).
[38] Ongaro, D., and Ousterhout, J. In Search of an Understandable Consensus Algorithm. In Proceedings of the

2014 USENIX Conference on USENIX Annual Technical Conference (USA, 2014), USENIX ATC’14, USENIX Association,

pp. 305–320.

[39] Ouyang, L., Huang, Y., Huang, B., Wei, H., and Ma, X. Leveraging TLA+ specifications to improve the reliability of

the zookeeper coordination service. CoRR abs/2302.02703 (2023).
[40] Padon, O., Immerman, N., Shoham, S., Karbyshev, A., and Sagiv, M. Decidability of Inferring Inductive Invariants.

In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (New
York, NY, USA, 2016), POPL ’16, Association for Computing Machinery, p. 217–231.

[41] Padon, O., McMillan, K. L., Panda, A., Sagiv, M., and Shoham, S. Ivy: Safety Verification by Interactive Generalization.

In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation (New York,

NY, USA, 2016), PLDI ’16, Association for Computing Machinery, p. 614–630.

[42] Schultz, W., Dardik, I., and Tripakis, S. Formal Verification of a Distributed Dynamic Reconfiguration Protocol. In

Proceedings of the 11th ACM SIGPLAN International Conference on Certified Programs and Proofs (Philadelphia, PA, USA,
2022), CPP 2022, Association for Computing Machinery, p. 143–152.

[43] Taft, R., Sharif, I., Matei, A., VanBenschoten, N., Lewis, J., Grieger, T., Niemi, K., Woods, A., Birzin, A., Poss, R.,

Bardea, P., Ranade, A., Darnell, B., Gruneir, B., Jaffray, J., Zhang, L., and Mattis, P. CockroachDB: The Resilient

Geo-Distributed SQL Database. In Proceedings of the 2020 ACM SIGMOD International Conference on Management of
Data (2020), SIGMOD ’20, Association for Computing Machinery, p. 1493–1509.

http://lamport.azurewebsites.net/tla/inductive-invariant.pdf


Interactive Safety Verification of Distributed Protocols by Inductive Proof Decomposition 23

[44] Taube, M., Losa, G., McMillan, K. L., Padon, O., Sagiv, M., Shoham, S., Wilcox, J. R., and Woos, D. Modularity for

decidability of deductive verification with applications to distributed systems. In Proceedings of the 39th ACM SIGPLAN
Conference on Programming Language Design and Implementation (2018), pp. 662–677.

[45] Tip, F. A survey of program slicing techniques. J. Program. Lang. 3 (1994).
[46] Vanlightly, J. raft-tlaplus: A TLA+ specification of the Raft distributed consensus algorithm. https://github.com/

Vanlightly/raft-tlaplus/blob/main/specifications/standard-raft/Raft.tla, 2023. GitHub repository.

[47] Wilcox, J. R. Compositional and Automated Verification of Distributed Systems. PhD thesis, University of Washington,

USA, 2021.

[48] Wilcox, J. R., Woos, D., Panchekha, P., Tatlock, Z., Wang, X., Ernst, M. D., and Anderson, T. E. Verdi: a framework

for implementing and formally verifying distributed systems. In Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation, Portland, OR, USA, June 15-17, 2015 (2015), D. Grove and S. M.

Blackburn, Eds., ACM, pp. 357–368.

[49] Woos, D., Wilcox, J. R., Anton, S., Tatlock, Z., Ernst, M. D., and Anderson, T. Planning for Change in a Formal

Verification of the Raft Consensus Protocol. In Proceedings of the 5th ACM SIGPLAN Conference on Certified Programs
and Proofs (2016), CPP 2016, Association for Computing Machinery, p. 154–165.

[50] Yao, J., Tao, R., Gu, R., and Nieh, J. DuoAI: Fast, Automated Inference of Inductive Invariants for Verifying Distributed

Protocols. In 16th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2022, Carlsbad, CA, USA,
July 11-13, 2022 (2022), M. K. Aguilera and H. Weatherspoon, Eds., USENIX Association, pp. 485–501.

[51] Yao, J., Tao, R., Gu, R., Nieh, J., Jana, S., and Ryan, G. DistAI: Data-Driven Automated Invariant Learning for

Distributed Protocols. In 15th USENIX Symposium on Operating Systems Design and Implementation (OSDI 21) (July
2021), USENIX Association, pp. 405–421.

[52] Yu, Y., Manolios, P., and Lamport, L. Model Checking TLA+ Specifications. In Correct Hardware Design and
Verification Methods (Berlin, Heidelberg, 1999), L. Pierre and T. Kropf, Eds., Springer Berlin Heidelberg, pp. 54–66.

https://github.com/Vanlightly/raft-tlaplus/blob/main/specifications/standard-raft/Raft.tla
https://github.com/Vanlightly/raft-tlaplus/blob/main/specifications/standard-raft/Raft.tla

	Abstract
	1 Introduction
	2 Overview
	2.1 Existing Approaches
	2.2 Our Approach: Inductive Proof Decomposition

	3 Preliminaries
	4 Inductive Proof Graphs
	4.1 Relative Induction Graph
	4.2 Action Decomposition

	5 Interactive Safety Verification
	5.1 Interactive Verification Procedure
	5.2 Localized Counterexample Guidance

	6 Empirical Evaluation
	6.1 Results and Discussion

	7 Related Work
	8 Conclusions and Future Work
	References

