
Interpretable Safety Verification of Distributed Protocols
by Inductive Proof Decomposition

Anonymous

Abstract
Many techniques for the automated verification of dis-

tributed protocols have been developed over the past several
years, centered around automatic inference of an inductive
invariant for proving safety. The performance of these tech-
niques, however, can still be unpredictable and their failure
modes opaque. Thus, in practice, large-scale verification ef-
forts typically require some amount of human guidance.

In this paper, we present inductive proof decomposition, a
new approach to protocol verification that provides a com-
positional, interactive approach to inductive invariant devel-
opment. Our technique aims to bridge the gap between the
automation provided by modern inference algorithms with
the interaction and interpretability often needed in large scale
proofs. Our approach is centered around the insight that any
inductive invariant can be decomposed into an inductive proof
graph, a core data structure that we use to guide the compo-
sitional development of an inductive invariant. We present
an algorithm to synthesize these graphs efficiently while also
permitting interaction from a human in cases of failure to
synthesize a complete proof.

We present our technique and experience applying it to
develop inductive safety proofs of several complex protocols,
including a large scale, asynchronous specification of the Raft
consensus protocol, beyond the capabilities of modern au-
tomated verification techniques. We also demonstrate how
these proof graphs provide insight into the structure of a pro-
tocol’s correctness proof, something not afforded by existing
approaches.

1 Introduction

Verifying the safety of large-scale distributed systems remains
an important and difficult challenge. These protocols serve as
the foundation of many modern fault-tolerant systems, mak-
ing the correctness of these protocols critical to the reliability
of large scale database and cloud systems [6, 18, 41]. More-
over, critical safety and liveness bugs continue to be found

in core protocols [32, 36, 40], underscoring the value of ver-
ifying these protocol designs. Formally verifying the safety
of these protocols typically centers around development of
an inductive invariant, an assertion about system state that is
preserved by all protocol transitions. Developing inductive
invariants, however, is one of the most challenging aspects of
safety verification and has typically required a large amount
of human effort for real world protocols [45, 46].

Over the past several years, particularly in the domain
of distributed protocol verification, there have been several
recent efforts to develop more automated inductive invari-
ant development techniques [13, 23, 35, 48]. Many of these
tools are based on modern model checking algorithms like
IC3/PDR [13, 14, 21–23], and others based on syntax-guided
or enumerative invariant synthesis methods [17,38,47]. These
techniques have made significant progress on solving various
classes of distributed protocols, including some variants of
real world protocols like the Paxos consensus protocol [14,25].
The theoretical complexity limits facing these techniques,
however, limit their ability to be fully general [34] and, even
in practice, the performance of these tools on complex pro-
tocols is still unpredictable, and their failure modes can be
opaque.

In particular, one key drawback of these methods is that,
in their current form, they are very much “all or nothing”.
That is, a given problem can either be automatically solved
with no manual proof effort, or the problem falls outside the
method’s scope and a failure is reported. In the latter case,
little assistance is provided in terms of how to develop a man-
ual proof or how a human can offer guidance to the tool. We
believe there is significant utility in providing a smoother
transition between these possible outcomes. In practice, real
world, large-scale verification efforts often benefit from some
amount of human interpretability and interaction i.e., a hu-
man provides guidance when an automated engine is unable
to automatically prove certain properties about a design or
protocol. This may involve simplifying the problem state-
ment given to the tool, or completing some part of the tool’s
proof process by hand. Recent verification efforts of industrial

1

scale protocols often note the high amount of human effort
in developing inductive invariants. Some leave human inte-
gration as future goals [3, 37], while others have adopted a
paradigm of integrating human assistance to accelerate proofs
for larger verification problems e.g., in the form of a manually
developed refinement hierarchy [14, 28].

In this paper we present inductive proof decomposition, a
new technique for inductive invariant development that aims
to address these limitations of existing approaches. Our tech-
nique utilizes the underlying compositional structure of an
inductive invariant to guide its development, based on the
insight that a standard inductive invariant can be decomposed
into an inductive proof graph. This graph structure makes
explicit the induction dependencies between lemmas of an
inductive invariant, and their relationship to the logical tran-
sitions of a concurrent or distributed protocol. It serves as
a core guidance mechanism for inductive invariant develop-
ment, by making the global dependency structure apparent. In
addition, the structure of the proof graph allows for localized
reasoning about proof obligations, enabling a user to focus on
small sub-problems of the inductive proof rather than a large,
monolithic inductive invariant.

We build a technique for automatically and efficiently syn-
thesizing these proof graphs, thus enabling automation while
preserving amenability to human interaction and interpretabil-
ity. We demonstrate that these proof graphs can be presented
to and interpreted directly by a human user, facilitating a
concrete and effective diagnosis and interaction process, en-
hancing interpretability of both the final inductive proof and
the intermediate results. In addition, our automated synthesis
technique also takes advantage of the proof graph structure
to accelerate its local synthesis tasks by computing local vari-
able slices at nodes of the graph, via localized static analyses.
That is, we are able to project away state variables that are
irrelevant to proving a local proof obligation, allowing for
both improved efficiency and interpretability.

We apply our technique to develop inductive invariants of
several large-scale distributed and concurrent protocol spec-
ifications, including an industrial-scale specification of the
Raft [33] consensus protocol, demonstrating the effectiveness
of our technique. We also provide an empirical evaluation of
the interpretability and interaction features of our method.

In summary, our contributions are as follows:

• Definition and formalization of inductive proof graphs,
a formal structure representing the logical dependencies
between conjuncts of an inductive invariant and actions
of a distributed protocol.

• Inductive proof decomposition, a new compositional in-
ductive invariant development technique that is amenable
both to efficient automated synthesis and fine-grained
human interaction and interpretability.

• Implementation of our technique in a verification tool,

CONSTANTS Node,Value,Quorum

VARIABLES voteRequestMsg,voted,voteMsg,votes, leader,decided

Protocol actions.

SendRequestVote(src,dst)≜
∧ voteRequestMsg′ = voteRequestMsg∪{⟨src,dst⟩}

SendVote(src,dst)≜
∧¬voted[src]
∧⟨dst,src⟩ ∈ voteRequestMsg
∧ voteMsg′ = voteMsg∪{⟨src,dst⟩}
∧ voted′[src] := True
∧ voteRequestMsg′ = voteRequestMsg\{⟨src,dst⟩}

RecvVote(n,sender)≜
∧⟨sender,n⟩ ∈ voteMsg
∧ votes′[n] := votes[n]∪{sender}

BecomeLeader(n,Q)≜
∧Q⊆ votes[n]
∧ leader′[n] := True

Decide(n,v)≜
∧ leader[n]
∧decided[n] = {}
∧decided′[n] := {v}

Safety property.

NoConflictingValues ≜
∀n1,n2 ∈ Node,v1,v2 ∈Value :
(v1 ∈ decided[n1]∧ v2 ∈ decided[n2])⇒ (v1 = v2)

Figure 1: State variables, protocol actions, and safety prop-
erty (NoConflictingValues) for the SimpleConsensus protocol.
Initial conditions omitted for brevity.

SCIMITAR, and an empirical evaluation on several dis-
tributed protocols, including a large-scale specification
of the Raft [33] consensus protocol.

2 Overview

To illustrate the core ideas of inductive proof decomposi-
tion, our inductive invariant development technique, we walk
through it on a small example protocol.

Figure 1 shows a formal specification of a simple consen-
sus protocol, defined as a symbolic transition system. This
protocol utilizes a simple leader election mechanism to se-
lect values, and is parameterized on a set of nodes, Node, a
set of values to be chosen, Value, and Quorum, a set of in-
tersecting subsets of Node. Nodes can vote at most once for
another node to become leader, and once a node garners a
quorum of votes it may become leader and decide a value.
The top level safety property, NoConflictingValues, shown in
Figure 1, states that no two differing values can be chosen.
The protocol’s specification consists of 6 state variables and 5
distinct protocol actions, expressed in a guarded action style

2

UniqueLeaders ≜
∀n1,n2 ∈ Node : leader[n1]∧ leader[n2]⇒ (n1 = n2)

LeaderHasQuorum ≜
∀n ∈ Node : leader[n]⇒
(∃Q ∈ Quorum : votes[n] = Q)

LeadersDecide ≜
∀n ∈ Node : (decided[n] ̸= {})⇒ leader[n]

NodesVoteOnce ≜
∀n,ni,n j ∈ Node :
¬(ni ̸= n j ∧n ∈ votes[ni]∧n ∈ votes[n j])

Ind ≜ Inductive invariant.
∧NoConflictingValues (Safety)
∧UniqueLeaders
∧LeaderHasQuorum
∧LeadersDecide
∧NodesVoteOnce
∧VoteRecvdImpliesVoteMsg
∧VoteMsgsUnique
∧VoteMsgImpliesVoted

Figure 2: Complete inductive invariant, Ind, for proving the
NoConflictingValues safety property of the SimpleConsen-
sus protocol from Figure 1. Selected lemma definitions also
shown.

i.e., actions are of the form A = Pre∧Post, where Pre is a
predicate over current state variables and Post is a conjunction
of update formulas where x′i refers to the value of xi in the
next state of a transition.

Our overall goal is to verify that a given protocol like the
one in Figure 1 satisfies its specified safety property. We can
do this by discovering an inductive invariant, which is an
invariant that (1) holds in all initial states of the system, is
(2) closed under transitions of the protocol, and (3) implies
our safety property. For example, given the protocol of Fig-
ure 1 as input, we may discover an inductive invariant such as
Ind shown in Figure 2. Ind is the conjunction of the original
safety property, plus 7 more lemmas, which strengthen this
NoConflictingValues safety property (thus ensuring that Ind
logically implies NoConflictingValues). Even for such a rela-
tively simple protocol, the inductive invariant is non-trivial in
both size and logical complexity of its predicates.

Our technique, inductive proof decomposition, utilizes the
underlying compositional structure of any inductive invariant
to guide the development of an invariant such as the one in
Figure 2. Specifically, our technique is centered around a data
structure called an inductive proof graph, which we use to
develop inductive invariants incrementally and composition-
ally. This data structure is amenable to automated synthesis
while also facilitating fine-grained human interaction and
interpretability due to its explicit compositional structure.

A complete inductive proof graph corresponding to the

NoConflictingValues ✓

Decide ✓

Vslice= {leader,decided}
|R(L,A)|=10/110,464 (11,046x reduction)

LeadersDecide ✓ UniqueLeaders ✓

BecomeLeader ✓

Vslice= {leader,votes}
|R(L,A)|=94/110,464 (1,175x reduction)

LeaderHasQuorum ✓NodesVoteOnce ✓

RecvVote ✓

Vslice= {voteMsg,votes}
|R(L,A)|=343/110,464 (322x reduction)

VoteRecvdImpliesVoteMsg ✓VoteMsgsUnique ✓

SendVote ✓

Vslice={voteMsg,voteRequestMsg,voted}
|R(L,A)|=21,887/110,464 (5x reduction)

VoteMsgImpliesVoted ✓

Figure 3: A complete inductive proof graph for SimpleCon-
sensus protocol corresponding to the inductive invariant in
Figure 2. Local variable slices are shown as Vslice, along with
the size of the reachable state set slice at that node, indicated
as |R(L,A)|, along with the reduction factor over the full set of
reachable states (of size 110,464) computed during synthesis.

inductive invariant Ind of Figure 2 is shown in Figure 3. The
main nodes of an inductive proof graph, lemma nodes, corre-
spond to lemmas of a system (so can be mapped to lemmas
of a traditional inductive invariant), and the edges represent
induction dependencies between these lemmas. This depen-
dency structure is also decomposed by protocol actions, rep-
resented in the graph via action nodes, which are associated
with each lemma node, and map to distinct protocol actions
e.g., the actions of SimpleConsensus listed in Figure 1. Each
action node of this graph is then associated with a correspond-
ing inductive proof obligation. That is, each action node A
with source lemmas L1, ...,Lk and target lemma L is associated
with the corresponding proof obligation

(L∧L1∧·· ·∧Lk ∧A)⇒ L′ (1)

where L′ denotes lemma L applied to the next-state (primed)
variables. An additional, key feature of the proof graph is that
each local node is associated with a variable slice, a subset of
protocol variables sufficient to consider for discharging that
node. Slices are computed from a static analysis of that node’s
lemma-action pair, and can be seen illustrated in Figure 3,
which annotates each proof node with its variable slice.

At a high level, our approach to inductive invariant devel-
opment is to incrementally construct an inductive proof graph,
working backwards from a specified safety property, and with
specific guidance along the way. This is illustrated more con-
cretely in Figure 4, which shows a sample of possible steps in
construction of the inductive proof graph for the NoConflict-
ingValues safety property of SimpleConsensus. Nodes that
are unproven (shown in orange and marked with ✗), means

3

NoConflictingValues ✓

Decide ✓

Vslice={leader,decided}

LeadersDecide ✓ UniqueLeaders ✗

BecomeLeader ✗

Vslice={leader,votes}

LeaderHasQuorum ✓

(a) In-progress proof graph (Step 1).

NoConflictingValues ✓

Decide ✓

Vslice={leader,decided}

LeadersDecide ✓ UniqueLeaders ✓

BecomeLeader ✓

Vslice={leader,votes}

LeaderHasQuorum ✓NodesVoteOnce ✗

RecvVote ✗

Vslice={voteMsg,votes}

(b) In-progress proof graph (Step 2).

Figure 4: Example progression of inductive proof graph de-
velopment for SimpleConsensus. Nodes in orange with ✗ are
those with remaining inductive proof obligations to be dis-
charged, and those in green with ✓ represent those with all
obligations discharged.

that there are outstanding counterexamples for those inductive
proof obligations. At a high level, the goal of the invariant
development process is to, at each unproven node, discover
support lemmas that make the lemma node inductive relative
to this set of lemmas (e.g. satisfying Formula 1), discharging
that proof obligation.

For example, in Figure 4a, the current focus is on discharg-
ing the unproven UniqueLeaders node. Note also that the
variable slice associated with this node is shown below as
{leader,votes} (2 of 6 total state variables), indicating that
only those state variables must be considered when develop-
ing a support lemma, focusing the reasoning task. In addition,
counterexamples to the inductive proof obligation at that node
(counterexamples to induction) can be examined to guide de-
velopment of a support lemma. So, a new lemma, NodesVo-
teOnce, may then be synthesized to discharge UniqueLeaders
and added to the graph, as shown in Figure 4b. As shown
there, newly synthesized support lemmas create new proof
obligations to consider (e.g. via NodesVoteOnce), with differ-
ent variable slices. The process continues until all nodes are
discharged e.g., leading to a complete inductive proof graph
as shown in Figure 3.

A main feature of the approach to inductive invariant de-
velopment as outlined above is that it is amenable both to
efficient automation and interaction from a human user. With
this in mind, we build an automated technique for synthesiz-
ing inductive proof graphs using a syntax-guided invariant

synthesis technique [1, 10, 38]. The structure of the inductive
proof graph and localized nature of these synthesis tasks also
enables several slicing based optimizations, accelerating our
automated synthesis routine. Crucially, due to the incremental
maintenance of the proof graph during this overall synthesis
procedure, we can allow fine-grained feedback and interaction
from a human in the case of failure to produce a complete
proof.

In the remainder of this paper, we formalize the above
ideas and techniques in more detail, and present an evaluation
applying our techniques to several complex distributed and
concurrent protocols.

3 Inductive Proof Graphs

Our inductive invariant development technique is based
around a core logical data structure, the inductive proof graph,
which we discuss and formalize in this section. This graph
encodes the structure of an inductive invariant in a way that
is amenable to efficient automated synthesis, and also to lo-
calized reasoning and human interpretability, as we discuss
further in Sections 4 and 5.

3.1 Decomposing Inductive Invariants
A monolithic approach to inductive invariant development,
where one searches for a single inductive invariant that is a
conjunction of smaller lemmas, is a general proof method-
ology for safety verification [29]. Any monolithic inductive
invariant, however, can alternatively be viewed in terms of
its relative induction dependency structure, which is the ini-
tial basis for our formalization of inductive proof graphs, and
which decomposes an inductive invariant based on this struc-
ture.

Namely, for a transition system M = (I,T) and associated
invariant S, given an inductive invariant

Ind = S∧L1∧·· ·∧Lk

each lemma in this overall invariant may only depend induc-
tively on some other subset of lemmas in Ind. More formally,
proving the consecution step of such an invariant requires
establishing validity of the following formula

(S∧L1∧·· ·∧Lk)∧T ⇒ (S∧L1∧·· ·∧Lk)
′ (2)

which can be decomposed into the following set of indepen-
dent proof obligations:

(S∧L1∧·· ·∧Lk)∧T ⇒ S′

(S∧L1∧·· ·∧Lk)∧T ⇒ L′1
...

(S∧L1∧·· ·∧Lk)∧T ⇒ L′k

(3)

4

If the overall invariant Ind is inductive, then each of the proof
obligations in Formula 3 must be valid. That is, we say that
each lemma in Ind is inductive relative to the conjunction of
lemmas in {S,L1, . . . ,Lk}.

With this in mind, if we define L = {S,L1, . . . ,Lk} as the
lemma set of Ind, we can consider the notion of a support
set for a lemma in L as any subset U ⊆ L such that L is
inductive relative to the conjunction of lemmas in U i.e.,
(
∧

ℓ∈U ℓ)∧L∧T ⇒ L′. As shown above in Formula 3, L is
always a support set for any lemma in L , but it may not be
the smallest support set. This support set notion gives rise
a structure we refer to as the lemma support graph, which
is induced by each lemma’s mapping to a given support set,
each of which may be much smaller than L .

For distributed and concurrent protocols, the transition re-
lation of a system M = (I,T) is typically a disjunction of
several distinct actions i.e., T = A1∨·· ·∨An, as shown in the
example of Figure 1. So, each node of a lemma support graph
can be augmented with sub-nodes, one for each action of the
overall transition relation. Lemma support edges in the graph
then run from a lemma to a specific action node, rather than
directly to a target lemma. Incorporation of this action-based
decomposition now lets us define the full inductive proof
graph structure.

Definition 1. For a system M = (I,T) with T = A1∨·· ·∨An,
an inductive proof graph is a directed graph (V,E) where

• V = VL ∪VA consists of a set of lemma nodes VL and
action nodes VA, where

– VL is a set of state predicates over M.

– VA = VL ×{A1, . . . ,An} is a set of action nodes,
associated with each lemma node in VL.

• E ⊆VL×VA is a set of lemma support edges.

Figure 5 shows an example of an inductive proof graph
along with its corresponding inductive proof obligations an-
notating each action node. Note that, for simplicity, when
depicting inductive proof graphs, if an action node is self-
inductive, we omit it. Also, action nodes are, by default, al-
ways associated with a particular lemma, so when depicting
these graphs, we show edges that connect action nodes to their
parent lemma node, even though these edges do not appear in
the formal definition.

3.2 Inductive Proof Graph Validity

We now define a notion of validity for an inductive proof
graph. That is, we define conditions on when a proof graph
can be seen as corresponding to a complete inductive invariant
and, correspondingly, when the lemmas of the graph can be
determined to be invariants of the underlying system.

S

A1 A2

L1

L1.2

L2

A1 A1

L1.1

(L1 ∧S∧A1⇒ S′) (L2 ∧S∧A2⇒ S′)

(L1.1 ∧L1.2 ∧L1 ∧A1⇒ L′1) (L1.2 ∧L2 ∧A1⇒ L′2)

Figure 5: Abstract inductive proof graph example, with lemma
and action nodes (in gray), and associated inductive proof obli-
gations next to each action node. Self-inductive obligations
are omitted for brevity, and action to lemma node relation-
ships are shown as incoming lemma edges.

Definition 2 (Local Action Validity). For an inductive proof
graph (VL ∪VA,E), let the inductive support set of an ac-
tion node (L,A) ∈ VA be defined as Supp(L,A) = {ℓ ∈ VL :
(ℓ,(L,A)) ∈ E}. We then say that an action node (L,A) is
locally valid if the following holds: ∧

ℓ∈Supp(L,A)

ℓ

∧L∧A⇒ L′ (4)

Definition 3 (Local Lemma Validity). For an inductive proof
graph (VL∪VA,E), a lemma node L ∈VL is locally valid if all
of its associated action nodes, {L}×{A1, . . . ,An}, are locally
valid. We alternately refer to a lemma node that is locally
valid as being discharged.

Based on the above local validity definitions, the notion of
validity for a full inductive proof graph is then straightforward
to define.

Definition 4 (Inductive Proof Graph Validity). An inductive
proof graph is valid whenever all lemma nodes of the graph
are locally valid.

As an example, Figure 3 shows an example of a complete in-
ductive proof graph satsifying the validity condition, whereas
Figure 4 illustrates partial proof graphs, neither of which sat-
isfy validity.

The validity notion for an inductive proof graph establishes
lemmas of such a graph as invariants of the underlying system
M, since a valid inductive proof graph can be seen to corre-
spond with a complete inductive invariant. We formalize this
as follows.

Lemma 1. For a system M = (I,T), if an inductive proof
graph (VL ∪VA,E) for M is valid, and I ⇒ L for every L ∈
VL, then the conjunction of all lemmas in VL is an inductive
invariant.

Proof. The conjunction of all lemmas in a valid graph must
be an inductive invariant, since every lemma’s support set

5

exists as a subset of all lemmas in the proof graph, and all
lemmas hold on the initial states.

Theorem 2. For a system M = (I,T), if a corresponding
inductive proof graph (VL∪VA,E) for M is valid, and I⇒ L
for every L ∈VL, then every L ∈VL is an invariant of M.

Proof. By Lemma 1, the conjunction of all lemmas in a valid
proof graph is an inductive invariant, and for any set of pred-
icates, if their conjunction is an invariant of M, then each
conjunct must be an invariant of M.

3.2.1 Note on Cycles and Subgraphs

Note that the definition of proof graph validity does not imply
any restriction on cycles in a valid inductive proof graph. For
example, a proof graph that is a pure k-cycle can be valid. For
example, a simple ring counter system with 3 state variables,
a,b, and c, where a single value gets passed from a to b to
c and exactly one variable holds the value at any time. An
inductive invariant establishing the property that a always has
a well-formed value will consist of 3 properties that form a
3-cycle, each stating that a, b and c’s state are, respectively,
always well-formed.

Also note that based on the above validity definition, any
subgraph of an inductive proof graph can also be considered
valid, if it meets the necessary conditions. Thus, in combi-
nation with Theorem 2 this implies that, even if a particular
proof graph is not valid, there may be subgraphs that are valid
and, therefore, can be used to infer that a subset of lemmas in
the overall graph are valid invariants.

3.3 Local Variable Slices
A benefit of the inductive proof graph is that its structure pro-
vides a way to focus, at each graph node, on a potentially small
subset of state variables that are relevant for discharging that
proof node. That is, when considering an action node (L,A),
any support lemmas for this node must, to a first approxima-
tion, refer only to state variables that appear in either L or A.
We make use of this general idea to compute a variable slice
at each node, allowing us to project away any protocol state
variables that are irrelevant for establishing a valid support
set for that node.

Intuitively, the variable slice of an action node (L,A) can
be understood as the union of: (1) the set of all variables
appearing in the precondition of A, (2) the set of all variables
appearing in the definition of lemma L, (3) for any variables in
L, the set of all variables upon which the update expressions
of those variables depend. Figure 3 shows an example of a
proof graph annotated with its variable slices at each node.
More precisely, our slicing computation at each action node is
based on the following static analysis of a lemma and action
pair (L,A). First, let V be the set of all state variables in our
system, and let V ′ refer to the primed, next-state copy of these

variables. For an action node (L,A), we have L∧A⇒ L′ as its
initial inductive proof obligation. Like the example protocol
from Figure 1, we consider actions to be written in guarded
action form, so they can be expressed as A = Pre∧ Post,
where Pre is a predicate over a set of current state variables,
denoted Vars(Pre)⊆ V , and Post is a conjunction of update
expressions of the form x′i = fi(Di), where x′i ∈V ′ and fi(Di)
is an expression over a subset of current state variables Di ⊆
V .

Definition 5. For an action A = Pre∧ Post and variable
x′i ∈ V ′ with update expression fi(Di) in Post, we define the
cone of influence of x′i, denoted COI(x′i), as the variable set
Di. For a set of primed state variables X = {x′1, . . . ,x′n}, we
define COI(X) simply as COI(x′1)∪·· ·∪COI(x′n)

Now, if we let Vars(Pre) ⊆ V and Vars(L′) ⊆ V ′ be the
sets of state variables that appear in the expressions of L′ and
Pre, respectively, then we can formally define the notion of a
slice as follows.

Definition 6. For an action node (L,A), its variable slice is
the set of state variables

Slice(L,A) =Vars(Pre)∪Vars(L)∪COI(Vars(L′))

Based on this definition, we can now show that a variable
slice is a strictly sufficient set of variables to consider when
developing a support set for an action node.

Theorem 3. For an action node (L,A), if a valid support set
exists, there must exist one whose expressions refer only to
variables in Slice(L,A).

Proof. Without loss of generality, the existence of a support
set for (L,A) can be defined as the existence of a predicate
Supp such that the formula

Supp∧L∧A∧¬L′ (5)

is unsatisfiable. As above, actions are of the form A = Pre∧
Post, where Post is a conjunction of update expressions, x′i =
fi(Di), so Formula 5 can be re-written as

Supp∧L∧Pre∧¬L′[Post] (6)

where L′[Post] represents the expression L′ with every x′i ∈
Vars(L′) substituted with the update expression given by
fi(Di). From this, it is straightforward to show our original
goal. If L∧Pre∧¬L′[Post] is satisfiable, and there exists a
Supp that makes Formula 6 unsatisfiable, then clearly Supp
must only refer to variables that appear in L∧Pre∧¬L′[Post],
which are exactly the set of variables in Slice(L,A).

6

Algorithm 1 Inductive proof graph synthesis.
1: Inputs:
2: Transition system M = (I,T), safety property S.
3: Grammar Preds, reachable state set R.
4: procedure SYNTHINDPROOFGRAPH(M, S, Preds, R)
5: (VL,VA,E)← ({S},{S}×{A1, . . . ,An}, /0)
6: G← (VL ∪VA,E) ▷ Initialize proof graph.
7: failed← /0

8: if ∀a ∈VA : (a is locally valid)∨ (a ∈ failed) then
9: return (G, failed). ▷ Returned graph G is valid if failed = /0

10: else
11: Pick (L,A) ∈ (VA \ failed) where (L,A) is not locally valid.
12: (Supp(L,A),success)← SYNTHLOCAL(M, Preds, R, L, A)
13: if ¬success then
14: failed← failed∪{(L,A)}
15: goto Line 8
16: end if
17: VL←VL ∪Supp ▷ Update the proof graph.
18: VA←VA ∪ (Supp×{A1, . . . ,Ak})
19: E← E ∪ (Supp×{(L,A)})
20: goto Line 8.
21: end if
22: end procedure

4 Synthesizing Inductive Proof Graphs

Our overall technique for developing inductive invariants uses
the inductive proof graph as its guiding data structure. We
build an algorithm for automatically synthesizing inductive
proof graphs, allowing for a smooth transition between both
(1) automation and (2) human interaction and interpretability.

Our proof graph synthesis algorithm extends ideas from
previously explored inductive invariant synthesis techniques
[10, 38], applying them in our context to incrementally syn-
thesize proof graphs efficiently, by running localized synthe-
sis tasks that take advantage of various slicing-based opti-
mizations. As discussed previously, incremental maintenance
of the proof graph provides an effective, fine-grained inter-
pretability and diagnosis mechanism when our automated
technique does not synthesize a complete proof graph, or has
made partial progress.

4.1 Our Synthesis Algorithm

At a high level, our inductive invariant inference algorithm
constructs an inductive proof graph incrementally, starting
from a given safety property S as its initial lemma node. It
works backwards from the safety property by synthesizing
support lemmas for remaining, un-discharged proof nodes.

To synthesize these support lemmas at local graph nodes,
we perform a local, syntax-guided invariant synthesis routine
that is based on an extension of a prior technique [38], adapted
to this compositional, graph-based setting.

Once all nodes of the proof graph have been discharged, the
algorithm terminates, returning a complete, valid inductive
proof graph. If it cannot discharge all nodes successfully,
either due to a timeout or other specified resource bounds,

it may return a partial, incomplete proof graph, containing
some nodes that have not been discharged and are instead
marked as failed. The overall algorithm is described formally
in Algorithm 1, which we walk through and discuss in more
detail below.

Formally, our algorithm takes as input a safety property S,
a transition system M = (I,T), and tries to prove that S is an
invariant of M by synthesizing an inductive proof graph suffi-
cient for proving S. It starts by initializing an inductive proof
graph (VL∪VA,E) where VL = {S}, VA = {S}×{A1, . . . ,An},
and E = /0, as shown on Line 5 of Algorithm 1. From here, the
graph is incrementally extended by synthesizing support lem-
mas and adding support edges from these lemmas to action
nodes that are not yet discharged.

As shown in the main loop of Algorithm 1 at Line 11, the
algorithm repeatedly selects some node of the graph that is not
discharged, and runs a local inference task at that node (Line
12 of Algorithm 1). Our local inference routine for synthesiz-
ing support lemmas Supp(L,A), is a subroutine, SYNTHLOCAL,
of the overall algorithm, and is shown separately as Algorithm
2, and described in more detail below in Section 4.2. Once the
local synthesis call SYNTHLOCAL completes successfully,
the generated set of support lemmas, Supp(L,A), is added to
the current proof graph (Line 17 of Algorithm 1), and if there
are remaining nodes that are not discharged, the algorithm
continues. Otherwise, it terminates with a complete, valid
proof graph (Line 9 of Algorithm 1).

It is also possible that, throughout execution, some local
synthesis tasks fail, due to various reasons e.g., exceeding a
local timeout, exhausting a grammar, or reaching some other
specified execution or resource bound. In this case, we mark
a node as failed (Line 14 of Algorithm 1), and continue as
before, excluding failed nodes from future consideration for
local inference. Due to our marking of nodes as locally failed,
it is possible for the algorithm to terminate with some nodes
that are not discharged (i.e. are marked in failed). We discuss
this aspect further in our evaluation section where we discuss
the interpretability and diagnosis capabilities of our approach.

The above outlines the execution of our algorithm at a
high level. To accelerate it, however, we rely on several key
optimizations that are enabled by the variable slicing compu-
tations we perform during local inference. We discuss these
in more detail below and how they accelerate our overall
inference procedure.

4.2 Local Lemma Synthesis with Slicing

As described above and shown in Algorithm 2, our local
synthesis routine, SYNTHLOCAL, consists of a main loop
that searches for candidate protocol invariants to serve as a
valid set of support lemmas. Prior syntax-guided approaches
[38, 48] for synthesizing inductive invariants utilize a set of
reachable protocol states, R, to look for these invariants, and
counterexamples to induction (CTIs) to guide selection from

7

Algorithm 2 Local support lemma synthesis.
1: procedure SYNTHLOCAL(M, Preds, R, L, A)
2: Vars(L,A) ← SLICE(L, A) ▷ See Definition 6.
3: R(L,A) ← {πVars(L,A) (r) : r ∈ R} ▷ Project R to the slice.
4: Preds(L,A) ← {p ∈ Preds : Vars(p)⊆Vars(L,A)} ▷ Grammar slice.
5: Supp(L,A)← /0

6: CT Is← CTIS(M,L,A) ▷ Find states s.t. ¬(Supp(L,A) ∧L∧A∧L′).
7: while CT Is ̸= /0 do
8: Invs← GENLEMMAINVS(M,Vars(L,A),Preds(L,A),R(L,A))
9: if ∃A ∈ Invs : A eliminates some CTI in CT Is then

10: Pick Lmax ∈ Invs that eliminates the most CTIs from CT Is.
11: Supp(L,A)← Supp(L,A) ∪{Lmax}
12: CT Is←CT Is\{s ∈CT Is : s ̸|= Lmax}
13: else
14: either goto Line 8
15: or return (Supp(L,A), False) ▷ Couldn’t eliminate CTIs.
16: end if
17: end while
18: return (Supp(L,A), True) ▷ Success: eliminated all CTIs
19: end procedure

among these invariants those that are relevant to the current
inductive proof obligation. We adopt a similar approach in
the context of each local proof node synthesis task.

The search space for these candidate invariants is defined
by a grammar of state predicates given as input to our overall
algorithm, Preds, and the GENLEMMAINVS routine uses a set
of reachable system states R to validate candidate invariants
sampled from this grammar. In general, we search for invari-
ant candidates in increasing size order (e.g. in max number of
syntactic terms) until reaching a specified search bound. Thus,
the number of candidates generated by Preds and the size of
R are the main factors impacting the performance of these
local synthesis tasks, which make up the main computational
work of our overall algorithm. We accelerate these tasks by
making use of the local variable slices at each node to apply
both grammar slicing and state slicing optimizations.

At the beginning of local synthesis at a node (L,A), we use
the local variable slice, Vars(L,A), to prune the set of predi-
cates in the global set Preds. That is, we simply filter out any
predicates in Preds that do not refer to a subset of variables
in Vars(L,A) (Line 4 of Algorithm 2). We then also compute
a local projection, R(L,A), of the reachable state set R (Line
3 of Algorithm 2), projecting out any variables absent from
the local variable slice Vars(L,A) (Line 3 of Algorithm 2). We
assume these projections can be computed efficiently, and
could in theory be done upfront when R is first generated.
Both the local grammar slice and state projection are then
passed as inputs to our invariant enumeration routine, GEN-
LEMMAINVS.

We show in our evaluation how these optimizations can
have a significant impact on the efficiency of the synthesis
procedure, since we can often prune out large portions of the
state and grammar space.

5 Evaluation

We evaluated our technique to understand (1) how our au-
tomated synthesis technique performs, (2) to examine the
interpretability of the generated proof graphs, and also (3)
how our approach allowed us to develop an inductive proof
for a large, complex distributed protocol when some amount
of interaction was needed.

To evaluate (1) and (2), we test our technique on a set of
distributed and concurrent protocols in a range of complex-
ities, up to distributed protocol specifications considerably
larger than those previously solved by other existing tools.
For testing (3) we test a large, asynchronous, message-passing
specification of the Raft consensus algorithm [33], which al-
lowed us to evaluate (2) as well. To our knowledge, ours is
the first automated inductive invariant synthesis effort for a
specification of Raft of this complexity.

Implementation and Setup Our technique is implemented
in our verification tool, SCIMITAR, which consists of approxi-
mately 6100 lines of Python code, and accepts as input proto-
cols specified in the TLA+ specification language [26]. Inter-
nally, SCIMITAR uses the TLC model checker [49] for most
of its compute-intensive inference sub-routines, like checking
candidate lemma invariants and CTI generation and elimi-
nation checking. Specifically, it uses TLC to generate coun-
terexamples to induction for finite protocol instances using a
randomized search technique [27]. Our current implementa-
tion uses TLC version 2.15 with some modifications to enable
the optimizations employed in our technique. We also use the
TLA+ proof system (TLAPS) [7] to validate the correctness
of the inductive invariants inferred by our tool.

All of our experiments below were carried out on a 56-core
Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz machine with
64GB of allocated RAM. We configured our tool to use a
maximum of 24 worker threads for TLC model checking and
other parallelizable inference tasks.

Benchmarks We used our tool to develop inductive invari-
ants for establishing core safety properties of 6 protocol bench-
marks. These protocols are summarized in Table 1, along with
various statistics about the specifications and invariants. All
formal specifications of these protocols are defined in TLA+,
some of which existed from prior work and some of which we
developed or modified based on existing specifications. Our
aim in this benchmark was to evaluate our tool on a range of
protocol complexities, to understand how it performs against
existing techniques for smaller protocols, and then to examine
both its performance gains on larger protocols, to examine the
scale of protocols it could solve that existing tools could not.

The TwoPhase benchmark is a high level specification of
the two-phase commit protocol [16], and SimpleConsensus
is the consensus protocol presented in Section 2. The Bakery
benchmark is a specification of Lamport’s Bakery algorithm

8

for mutual exclusion [24], which has only recently had at-
tempts at automated verification [12]. We also test a specifica-
tion of a concurrent cache coherence protocol, GermanCache,
which has been used as a complex and challenging verification
benchmark in past work [4].

The largest of our benchmarks is an industrial scale specifi-
cation of the Raft consensus protocol [33]. The specification
we use is based on a model similar to the original Raft for-
mal specification [31, 44], and models asynchronous message
passing between all nodes and fine-grained local state. We
verify two core safety properties of the protocol. Namely,
ElectionSafety, stating that no two leaders can be in the same
term, and another higher level lemma, PrimaryOwnsEntries,
stating that leader servers in Raft should always contain log
entries they created in their term.

We note that our largest benchmark specification, for Asyn-
cRaft, is of a complexity significantly greater than those tested
in recent automated invariant inference techniques, so we con-
sider them as the most relevant benchmarks for evaluating our
automation and interpretability features. For example, even in
a recent approach, DuoAI [47] reports the LoC of the largest
protocol tested as 123 lines of code in the Ivy language [35],
which is of a similar abstraction level to TLA+. Our largest
specification of Raft is over 500 lines of TLA+. Thus, we view
our benchmarks as examining scalability of our technique on
protocols that are notably more complex than those tested by
existing tools.

Note that all protocols tested are parameterized, meaning
that they are typically infinite-state, but have some fixed set
of parameters that can be instantiated with finite parameters
e.g. the set of processes or servers. Our synthesis algorithm
runs using finite instantiations of protocol parameters, but our
grammar templates are general enough to infer invariants that
are valid for all instantiations of the protocol. Once synthe-
sized by our tool, we validate the correctness of the inductive
invariants using the TLC model checker and the TLA+ proof
system [7].

Results Summary Table 1 shows various statistics about
the protocols we tested, including the number of state vari-
ables, number of actions, lines of code (LoC) in the TLA+ pro-
tocol specifications, number of lemmas in each proof graph,
etc. We compare against another state of the art inductive
invariant inference tool, endive, which was presented in [38],
since it both accepts specifications in TLA+ and is also based
on similar syntax-guided synthesis technique with similar
input parameters. Thus, it makes a good candidate for com-
parisons since it has both performed strongly on modern dis-
tributed protocol inference benchmarks and is also the most
analogous to our tool in terms of input and approach. To our
knowledge, we are not aware of any other existing tool that
can solve the largest benchmarks we test.

At a high level, the results can be understood as falling
into roughly three distinct qualitative classes of performance.

At the smallest protocol level, for benchmarks TwoPhase
and SimpleConsensus, our approach successfully finds an
inductive invariant, but its runtime is of comparable, albeit
slower, performance than the endive tool, the baseline ap-
proach from [38]. We view this an expected artifact of our
technique and implementation, which is optimized for scal-
ability, at the cost of some upfront overhead when caching
state slices, etc. The main goal for these smaller protocols,
though, was to simply verify that our tool performs within a
similar class of performance as existing approaches, and also
to examine the generated proof graphs.

In the next larger class of protocols, including Bakery and
GermanCache, our tool is able to solve both of these bench-
marks whereas endive fails to solve any within a 16 hour time-
out. These protocols are significantly larger than the previous
benchmarks, as can be seen, for example, by their reachable
state sets |R|, and the number of lemmas in each synthesized
proof i.e., both with≥ 20 lemmas, with GermanCache having
46 lemmas in its inductive proof graph.

We observed that our approach is able to leverage the slic-
ing optimizations effectively to achieve these performance
improvements on these difficult benchmarks. Note that in our
implementation we in some cases compute slices at an even
finer grained level than the full variable slice computed at a
node, allowing for even greater acceleration. For example, if
we check a set of properties that only refers to subset of vari-
ables in a local slice, we can use an even smaller state slice
projection for those checks. For the GermanCache model,
though |R| is 1,663,875, the median state set size is under
1% of this full state set. We observe these slicing reductions
similarly for Bakery, whose median state set sizes is under 2%
of the reachable state set. Both of their median grammar slices
are also near half of the full grammar size, which has a sig-
nificant impact when searching over all candidate invariants
generated by the predicates in the grammar.

The AsyncRaft protocol is the most complex benchmark
we test, and we were able to synthesize an inductive proof
graph for two high level safety properties, ElectionSafety
(AsyncRaftES) and PrimaryOwnsEntries (AsyncRaftPO),
with both having median state sets under a few percent of
the total reachable set, and similarly reduced grammar slices.
We discuss the structure of those developed proof graphs and
qualitative aspects of our experience developing them in more
detail below in Section 5.1.

Examining Interpretability As a concrete examination of
the interpretability of our method, Figure 6 shows a complete
synthesized proof graph for the TwoPhase benchmark. This
benchmark is a specification of the classic two-phase commit
protocol [16], where a transaction manager aims to achieve
agreement from a set of resource managers on whether to
commit or abort a transaction. The proof graph shows action
labels and omits full definitions of each lemma node, to il-
lustrate the overall structure more clearly. This proof graph

9

Scimitar endive

Benchmark LoC |R| Vars |A| |Preds| # Lemmas Time |R|∼(L,A) |Preds|∼(L,A) Time
SimpleConsensus 108 110,464 6 5 25 9 748 0.1% 56% 416
TwoPhase 195 288 6 7 18 12 348 5.9 % 66 % 173
GermanCache [4] 210 1,663,875 11 12 38 46 17165 0.3% 47 % timeout
Bakery [24] 234 6,016,610 6 7 88 20 15854 1.2 % 50 % timeout
AsyncRaftES 583 2,594,148 12 9 127 9 7088 7.1 % 34 % timeout
AsyncRaftPO 583 2,598,265 12 9 127 37 33735 0.7% 31 % timeout

Table 1: Protocols used in evaluation and metrics on their specifications and inductive proof graphs. The |R| column reports the
size of the set of explored reachable states used during inference, |Preds| is the number of predicates in the base grammar, and
Vars and A, respectively, show the number of state variables and actions in the specification. Time shows the time in seconds to
synthesize an inductive invariant. The (endive) column represents the baseline approach based on the technique of [38], when
run with the same relevant parameters. A timeout entry indicates no invariant found after a 16 hour timeout. |R|∼(L,A) shows the
median of state slice sizes computed during synthesis as a percentage of |R|, similarly for |Preds|∼(L,A).

RMChooseToAbort

Sa f ety

RMRcvAbortMsg

RMRcvCommitMsg

Inv73

Inv11

Inv23

RMRcvCommitMsg

Inv2

RMChooseToAbort

RMRcvCommitMsg T MAbort

Inv1

RMRcvAbortMsg

Inv62

T MCommit

Inv1522

T MCommit

Inv16

T MAbortT MCommit

Inv4

RMRcvCommitMsg

RMRcvCommitMsg

RMRcvCommitMsg

Inv7

RMRcvAbortMsg

RMRcvAbortMsg

RMRcvAbortMsg

T MRcvPrepared

Inv1193

T MRcvPrepared

Inv1163

T MRcvPrepared

Inv29

Figure 6: TwoPhase inductive proof graph for establishing
safety property that decisions must be consistent across nodes.
Excerpt of lemmas shown in Figure 7.

establishes the core safety property of two-phase commit
which states that no two resource managers can come to con-
flicting commit and abort decisions, and provides an intuitive
way to understand the structure of this inductive proof.

As seen in Figure 6, the root safety node, Safety, has 3 sup-
porting action nodes, RMRcvCommitMsg, RMRcvAbortMsg
and RMChooseToAbort, which represent, respectively, the ac-
tions that can directly falsify the target safety property of
two-phase commit, via some resource manager committing
or aborting. The support lemmas of RMRcvCommitMsg and
RMRcvAbortMsg respectively, Inv23 and Inv11, for example,
stipulate that presence of a commit or abort message must
imply that no other resource manager has made a conflicting
commit (abort) decision (definitions shown in Figure 7). This

Sa f ety ≜ ∀rm1,rm2 ∈ RM :
¬(rmState[rm1] = “aborted”∧ rmState[rm2] = “committed”)

Inv23 ≜ ∀rm ∈ RM :
(“Commit” ∈ msgsCommit)⇒ (rmState[rm] ̸= “aborted”)

Inv11 ≜ ∀rm ∈ RM :
¬(“Abort” ∈ msgsAbort)∨ (rmState[rm] ̸= “committed”)

Inv7 ≜ ¬(“Abort” ∈ msgsAbort)∨ (¬(tmState = “init”))

Figure 7: Definitions of some lemma nodes from proof graph
for TwoPhase in Figure 6.

reasoning can also be seen tracing back to lower level support
lemmas in the graph e.g., Inv7 which establishes invariants
on the initial state of the transaction manager.

Overall, this proof graph admits a relatively tree-like struc-
ture, and we can naturally focus on small sub-components
on the graph. We found that this case study generally sup-
ports our interpretability hypothesis i.e., that the inductive
proof graph structure can provide insight into the reasoning
structure of the proof, and can help guide its development and
analysis.

5.1 Detailed Case Study: Raft Consensus Pro-
tocol

As a more in-depth evaluation of our technique for verifying
a large scale protocol, we developed an inductive proof for
a large-scale, asynchronous specification of Raft, to explore
how our automated techniques and interpretability features
are effective at facilitating this process. We verified a high
level lemma of Raft, PrimaryOwnsEntries, which states that
if a log entry in Raft exists in term T , then a leader in term T
must have this entry in its own log.

Figure 8 shows the complete inductive proof graph that we
synthesized for establishing this property of our Raft spec-

10

ification, which consists of 37 lemma nodes. The main ac-
tions of this proof graph correspond to those of standard Raft
e.g., dealing with election of a leader (RequestVote, Han-
dleReqVoteReq, HandleReqVoteResp, BecomeLeader) and
replicating log entries between servers (AppendEntries, Ac-
ceptAppendEntries, ClientRequest). The core safety property
is shown in green, and we show several important core syn-
thesized support lemmas annotated in blue, which serve as
helpful waypoints for understanding the structural compo-
nents of this proof graph.

Specifically, along the ClientRequest support ancestry of
the safety node, this leads to a first main support lemma, Elec-
tionSafety, which is a key property of standard Raft stating that
two leaders cannot be elected in the same term. Separately, the
BecomeLeader parent subgraph of the safety property is sup-
ported by the CandidateElectImpliesNoLogsInTerm lemma,
stating that if a candidate has gathered a quorum of votes, then
there mustn’t exist any logs in its term. The supporting sub-
graph for the ElectionSafety property, highlighted in orange,
is largely independent of the subgraph supporting Candidate-
ElectImpliesNoLogsInTerm, highlighting the compositional
substructure of this graph.

Another key feature made apparent in this graph is where
so-called message induction cycles occur. That is, cases where
certain lemmas must hold both on a local server and also when
its state is sent into the network via a message. For example,
Safety and Inv7970 form one of these cycles, where Inv7970
states a similar property to PrimaryOwnsEntries but refers to
the log state in an AppendEntries message rather than the state
of a local server. Similarly, CandidateElectImpliesNoLogsIn-
Term and Inv13260 form such a cycle. These local cycles form
due to the message-passing nature of the protocol, and we
note that these patterns bear similarities to recent observations
that inductive invariant lemmas for distributed protocols often
fall into a standard taxonomy [50], and some invariants can
be automatically derived from others.

In general, we found the proof graph structure a significant
aid to developing this inductive proof with both automation
and guidance. During development, we encountered several
cases where our synthesis algorithm was able to discharge
significant portions of the graph but failed on key local nodes.
We found a highly localized manner of inspection and gram-
mar repair to be very effective in ultimately guiding the tool
towards full convergence. Without the automation and inter-
pretability features of our technique, we do not think it would
have been possible to efficiently easily get a proof of this scale
to go through at this level of automation.

6 Related Work

Automated Inductive Invariant Inference There are sev-
eral recently published techniques that attempt to solve the
problem of fully automated inductive invariant inference for
distributed protocols, including IC3PO [13], SWISS [17]

DuoAI [47, 48], and others [38]. These tools, however, pro-
vide little feedback when they fail on a given problem, and
the large scale protocols we presented in this paper are of a
complexity considerably higher than what existing modern
tools in this area can solve.

More broadly, there exist many prior techniques for the
automatic generation of program and protocol invariants
that rely on data driven or grammar based approaches. Hou-
dini [11] and Daikon [8] both use enumerative checking ap-
proaches to discover program invariants. FreqHorn [10] tries
to discover quantified program invariants about arrays using
an enumerative approach that discovers invariants in stages
and also makes use of the program syntax. Other techniques
have also tried to make invariant discovery more efficient
by using improved search strategies based on MCMC sam-
pling [39].

Interactive and Compositional Verification There is other
prior work that attempts to employ compositional and interac-
tive techniques for safety verification of distributed protocols,
but these typically did not focus on presenting a fully auto-
mated and interpretable inference technique. For example,
the Ivy system [35] and additional related work on exploiting
modularity for decidability [42].

In the Ivy system [35] one main focus is on the model-
ing language, with a goal of making it easy to represent sys-
tems in a decidable fragment of first order logic, so as to
ensure verification conditions always provide some concrete
feedback in the form of counterexamples. They also discuss
an interactive approach for generalization from counterex-
amples, that has similarities to the UPDR approach used in
extensions of IC3/PDR [21]. In contrast, our work is primar-
ily focused on different concerns e.g., we focus on compo-
sitionality as a means to provide an efficient and scalable
automated inference technique, and as a means to produce a
more interpretable proof artifact, in addition to allowing for
localized counterexample reasoning and slicing. They also do
not present a fully automated inference technique, as we do.
Additionally, we view decidable modeling as an orthogonal
component of the verification process that could be comple-
mentary to our approach.

More generally, compositional verification has a long his-
tory and has been employed as a key technique for addressing
complexity of large scale systems verification. For example,
previous work has tried to decompose proofs into decidable
sub-problems [42]. The notion of learning assumptions for
compositional assume-guarantee reasoning has also been ex-
plored thoroughly and bears similarities to our approach of
learning support lemmas while working backwards from a tar-
get proof goal [5]. Compositional model checking techniques
have also been explored in various other domains [2, 30].

Concurrent Program Analysis Our techniques presented
in this paper bear similarities to prior approaches used in

11

AcceptAppendEntries

Sa f ety

AppendEntries

BecomeLeader

ClientRequest

Inv7970

AcceptAppendEntries

CandidateElectImpliesNoLogsInTerm

AppendEntries

ElectionSa f ety

BecomeLeader

Inv13260

AcceptAppendEntries

ClientRequest

HandleReqVoteResp

Inv6107

BecomeLeader ClientRequest

Inv14593

AppendEntries

HandleReqVoteResp

Inv8213

AcceptAppendEntries

BecomeLeader HandleReqVoteResp

Inv2

Inv8

U pdateTerm ClientRequest

RequestVote

Inv4

HandleReqVoteResp

Inv31

HandleReqVoteReqRequestVote

Inv3536Inv2942

Inv4

HandleReqVoteReq

Inv453

Inv534

Inv11

RequestVote

Inv140

HandleReqVoteRespHandleReqVoteReqBecomeLeader

RequestVote

Inv0

RequestVote U pdateTerm

HandleReqVoteResp

Inv387

HandleReqVoteReq HandleReqVoteResp

RequestVote

Inv9 Inv5

Inv9

HandleReqVoteResp

RequestVote U pdateTerm

RequestVote U pdateTermHandleReqVoteResp

RequestVote

Inv7

AppendEntries

AppendEntries

Inv7

Inv11

Inv614

RequestVote

Inv16

HandleReqVoteReq

Inv4

HandleReqVoteReq

Inv76

HandleReqVoteResp

Inv12

HandleReqVoteReq

HandleReqVoteResp

AcceptAppendEntries

Inv2444 QuorumsSa f eAtTerms

HandleReqVoteReq U pdateTerm

Inv2460

HandleReqVoteReq HandleReqVoteReq

Inv543 Inv12034

Figure 8: AsyncRaft inductive proof graph for PrimaryOwnsEntries safety property (labeled as Safety in green). Key lemmas
named and shown in blue. Key lemmas in blue, support subgraph for ElectionSafety in orange, and induction cycles in blue.

the analysis and proofs of concurrent programs. Our notion
of inductive proof graphs is similar to the inductive data
flow graph concept presented in [9]. That work, however,
is focused specifically on the verification of multi-process
concurrent programs, and did not generalize the notions to
a distributed setting. Our procedures for inductive invariant
inference and our slicing optimizations are also novel to our
approach.

Our slicing techniques are similar to cone-of-influence re-
ductions [15], as well as other program slicing techniques
[43]. It also shares some concepts with other path-based
program analysis techniques that incorporate slicing tech-
niques [19, 20]. In our case, however, we apply it at the level
of a single protocol action and target lemma, particularly for
the purpose of accelerating syntax-guided invariant synthesis
tasks.

7 Conclusions and Future Work

We presented inductive proof decomposition, a new technique
for inductive invariant development of large scale distributed
protocols. Our technique both improves on the scalability of
existing approaches by building an inference routine around
the inductive proof graph, and this structure also makes the
approach amenable to interpretability and failure diagnosis.

In future, we are interested in exploring new approaches and
further optimizations enabled by our technique and composi-
tional proof structure. For example, we would be interested
in seeing how the compositional structure of the inductive
proof graph can be used to further tune and optimize local
inference tasks e.g. by taking advantage of more local proper-
ties that can accelerate inference, like specialized quantifier
prefix templates, action-specific grammars, etc. We would
also like to explore and understand the empirical structure
of these proof graphs on a wider range of larger and more
complex real world protocols, and to understand the structure
of inductive proof graphs with respect to protocol refinement.

References

[1] ALUR, R., BODIK, R., JUNIWAL, G., MARTIN, M.
M. K., RAGHOTHAMAN, M., SESHIA, S. A., SINGH,
R., SOLAR-LEZAMA, A., TORLAK, E., AND UDUPA,
A. Syntax-guided synthesis. In 2013 Formal Methods
in Computer-Aided Design (2013), pp. 1–8.

[2] ALUR, R., HENZINGER, T. A., MANG, F. Y. C.,
QADEER, S., RAJAMANI, S. K., AND TASIRAN, S.
Mocha: Modularity in model checking. In Computer
Aided Verification (Berlin, Heidelberg, 1998), A. J. Hu

12

and M. Y. Vardi, Eds., Springer Berlin Heidelberg,
pp. 521–525.

[3] BRAITHWAITE, S., BUCHMAN, E., KONNOV, I., MILO-
SEVIC, Z., STOILKOVSKA, I., WIDDER, J., AND ZAM-
FIR, A. Formal Specification and Model Checking of
the Tendermint Blockchain Synchronization Protocol
(Short Paper). In 2nd Workshop on Formal Methods for
Blockchains (FMBC 2020) (2020), Schloss Dagstuhl-
Leibniz-Zentrum für Informatik.

[4] CHOU, C.-T., MANNAVA, P. K., AND PARK, S. A
simple method for parameterized verification of cache
coherence protocols. In Formal Methods in Computer-
Aided Design: 5th International Conference, FMCAD
2004, Austin, Texas, USA, November 15-17, 2004. Pro-
ceedings 5 (2004), Springer, pp. 382–398.

[5] COBLEIGH, J. M., GIANNAKOPOULOU, D., AND
PĂSĂREANU, C. S. Learning assumptions for com-
positional verification. In Tools and Algorithms for the
Construction and Analysis of Systems: 9th International
Conference, TACAS 2003 Held as Part of the Joint Euro-
pean Conferences on Theory and Practice of Software,
ETAPS 2003 Warsaw, Poland, April 7–11, 2003 Proceed-
ings 9 (2003), Springer, pp. 331–346.

[6] CORBETT, J. C., DEAN, J., EPSTEIN, M., FIKES, A.,
FROST, C., FURMAN, J., GHEMAWAT, S., GUBAREV,
A., HEISER, C., HOCHSCHILD, P., HSIEH, W., KAN-
THAK, S., KOGAN, E., LI, H., LLOYD, A., MELNIK,
S., MWAURA, D., NAGLE, D., QUINLAN, S., RAO, R.,
ROLIG, L., WOODFORD, D., SAITO, Y., TAYLOR, C.,
SZYMANIAK, M., AND WANG, R. Spanner: Google’s
Globally-Distributed Database. In OSDI (2012).

[7] COUSINEAU, D., DOLIGEZ, D., LAMPORT, L., MERZ,
S., RICKETTS, D., AND VANZETTO, H. TLA+ Proofs.
Proceedings of the 18th International Symposium on
Formal Methods (FM 2012), Dimitra Giannakopoulou
and Dominique Mery, editors. Springer-Verlag Lecture
Notes in Computer Science 7436 (January 2012), 147–
154.

[8] ERNST, M. D., PERKINS, J. H., GUO, P. J., MCCA-
MANT, S., PACHECO, C., TSCHANTZ, M. S., AND
XIAO, C. The Daikon system for dynamic detection of
likely invariants. Science of computer programming 69,
1-3 (2007), 35–45.

[9] FARZAN, A., KINCAID, Z., AND PODELSKI, A. In-
ductive Data Flow Graphs. In The 40th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL ’13, Rome, Italy - January
23 - 25, 2013 (2013), R. Giacobazzi and R. Cousot, Eds.,
ACM, pp. 129–142.

[10] FEDYUKOVICH, G., AND BODÍK, R. Accelerating
Syntax-Guided Invariant Synthesis. In Tools and Al-
gorithms for the Construction and Analysis of Systems
(Cham, 2018), D. Beyer and M. Huisman, Eds., Springer
International Publishing, pp. 251–269.

[11] FLANAGAN, C., AND LEINO, K. R. M. Houdini, an
Annotation Assistant for ESC/Java. In Proceedings of
the International Symposium of Formal Methods Europe
on Formal Methods for Increasing Software Productivity
(Berlin, Heidelberg, 2001), FME ’01, Springer-Verlag,
p. 500–517.

[12] GOEL, A., MERZ, S., AND SAKALLAH, K. A. Towards
an automatic proof of the bakery algorithm. In Formal
Techniques for Distributed Objects, Components, and
Systems (Cham, 2023), M. Huisman and A. Ravara, Eds.,
Springer Nature Switzerland, pp. 21–28.

[13] GOEL, A., AND SAKALLAH, K. On Symmetry and
Quantification: A New Approach to Verify Distributed
Protocols. In NASA Formal Methods: 13th Interna-
tional Symposium, NFM 2021, Virtual Event, May 24–28,
2021, Proceedings (Berlin, Heidelberg, 2021), Springer-
Verlag, p. 131–150.

[14] GOEL, A., AND SAKALLAH, K. A. Towards an Auto-
matic Proof of Lamport’s Paxos. 2021 Formal Methods
in Computer Aided Design (FMCAD) (2021), 112–122.

[15] GORDON, M. J., KAUFMANN, M., AND RAY, S. The
Right Tools for the Job: Correctness of Cone of Influ-
ence Reduction Proved Using ACL2 and HOL4. J. Au-
tom. Reason. 47, 1 (jun 2011), 1–16.

[16] GRAY, J. Notes on data base operating systems. In Oper-
ating Systems, An Advanced Course (Berlin, Heidelberg,
1978), Springer-Verlag, p. 393–481.

[17] HANCE, T., HEULE, M., MARTINS, R., AND PARNO,
B. Finding Invariants of Distributed Systems: It’s a
Small (Enough) World After All. In 18th USENIX Sym-
posium on Networked Systems Design and Implemen-
tation (NSDI 21) (Apr. 2021), USENIX Association,
pp. 115–131.

[18] HUANG, D., LIU, Q., CUI, Q., FANG, Z., MA, X., XU,
F., SHEN, L., TANG, L., ZHOU, Y., HUANG, M., WEI,
W., LIU, C., ZHANG, J., LI, J., WU, X., SONG, L.,
SUN, R., YU, S., ZHAO, L., CAMERON, N., PEI, L.,
AND TANG, X. TiDB: A Raft-Based HTAP Database.
Proc. VLDB Endow. 13, 12 (aug 2020), 3072–3084.

[19] JAFFAR, J., MURALI, V., NAVAS, J. A., AND SAN-
TOSA, A. E. Path-sensitive backward slicing. In
Static Analysis: 19th International Symposium, SAS
2012, Deauville, France, September 11-13, 2012. Pro-
ceedings 19 (2012), Springer, pp. 231–247.

13

[20] JHALA, R., AND MAJUMDAR, R. Path slicing. In
Proceedings of the 2005 ACM SIGPLAN Conference
on Programming language Design and Implementation
(2005), pp. 38–47.

[21] KARBYSHEV, A., BJØRNER, N., ITZHAKY, S., RINET-
ZKY, N., AND SHOHAM, S. Property-Directed Infer-
ence of Universal Invariants or Proving Their Absence.
J. ACM 64, 1 (mar 2017).

[22] KOENIG, J. R., PADON, O., IMMERMAN, N., AND
AIKEN, A. First-Order Quantified Separators. In Pro-
ceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation
(2020), PLDI 2020, Association for Computing Machin-
ery, p. 703–717.

[23] KOENIG, J. R., PADON, O., SHOHAM, S., AND AIKEN,
A. Inferring Invariants with Quantifier Alternations:
Taming the Search Space Explosion. In Tools and Al-
gorithms for the Construction and Analysis of Systems
(Cham, 2022), D. Fisman and G. Rosu, Eds., Springer
International Publishing, pp. 338–356.

[24] LAMPORT, L. A New Solution of Dijkstra’s Concur-
rent Programming Problem. Commun. ACM 17, 8 (aug
1974), 453–455.

[25] LAMPORT, L. Paxos made simple. ACM SIGACT News
(Distributed Computing Column) 32, 4 (Whole Number
121, December 2001) (2001), 51–58.

[26] LAMPORT, L. Specifying Systems: The TLA+ Lan-
guage and Tools for Hardware and Software Engineers.
Addison-Wesley, Jun 2002.

[27] LAMPORT, L. Using TLC to Check Inductive Invari-
ance. http://lamport.azurewebsites.net/tla/
inductive-invariant.pdf, 2018.

[28] MA, H., AHMAD, H., GOEL, A., GOLDWEBER, E.,
JEANNIN, J.-B., KAPRITSOS, M., AND KASIKCI, B.
Sift: Using Refinement-guided Automation to Verify
Complex Distributed Systems. In USENIX Annual Tech-
nical Conference (2022).

[29] MANNA, Z., AND PNUELI, A. Temporal Verification
of Reactive Systems: Safety. Springer-Verlag, Berlin,
Heidelberg, 1995.

[30] MCMILLAN, K. A methodology for hardware verifica-
tion using compositional model checking. Science of
Computer Programming 37, 1 (2000), 279–309.

[31] ONGARO, D. Consensus: Bridging Theory and Practice.
Doctoral thesis (2014).

[32] ONGARO, D. Bug in single-server member-
ship changes. https://groups.google.com/g/raft-
dev/c/t4xj6dJTP6E/m/d2D9LrWRza8J, jul 2015.

[33] ONGARO, D., AND OUSTERHOUT, J. In Search of an
Understandable Consensus Algorithm. In Proceedings
of the 2014 USENIX Conference on USENIX Annual
Technical Conference (USA, 2014), USENIX ATC’14,
USENIX Association, pp. 305–320.

[34] PADON, O., IMMERMAN, N., SHOHAM, S., KARBY-
SHEV, A., AND SAGIV, M. Decidability of Inferring
Inductive Invariants. In Proceedings of the 43rd An-
nual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages (New York, NY, USA,
2016), POPL ’16, Association for Computing Machin-
ery, p. 217–231.

[35] PADON, O., MCMILLAN, K. L., PANDA, A., SAGIV,
M., AND SHOHAM, S. Ivy: Safety Verification by In-
teractive Generalization. In Proceedings of the 37th
ACM SIGPLAN Conference on Programming Language
Design and Implementation (New York, NY, USA,
2016), PLDI ’16, Association for Computing Machinery,
p. 614–630.

[36] PÎRLEA, G. Protocol bugs list. https://github.
com/dranov/protocol-bugs-list, 2020. Accessed:
2024-09-17.

[37] SCHULTZ, W., DARDIK, I., AND TRIPAKIS, S. Formal
Verification of a Distributed Dynamic Reconfiguration
Protocol. In Proceedings of the 11th ACM SIGPLAN
International Conference on Certified Programs and
Proofs (Philadelphia, PA, USA, 2022), CPP 2022, Asso-
ciation for Computing Machinery, p. 143–152.

[38] SCHULTZ, W., DARDIK, I., AND TRIPAKIS, S. Plain
and Simple Inductive Invariant Inference for Dis-
tributed Protocols in TLA+. In 2022 Formal Meth-
ods in Computer-Aided Design (FMCAD) (2022), IEEE,
pp. 273–283.

[39] SHARMA, R., AND AIKEN, A. From Invariant Check-
ing to Invariant Inference Using Randomized Search. In
Computer Aided Verification - 26th International Confer-
ence, CAV 2014, Held as Part of the Vienna Summer of
Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Pro-
ceedings (2014), A. Biere and R. Bloem, Eds., vol. 8559
of Lecture Notes in Computer Science, Springer, pp. 88–
105.

[40] SUTRA, P. On the correctness of egalitarian paxos.
CoRR abs/1906.10917 (2019).

[41] TAFT, R., SHARIF, I., MATEI, A., VANBENSCHOTEN,
N., LEWIS, J., GRIEGER, T., NIEMI, K., WOODS, A.,

14

http://lamport.azurewebsites.net/tla/inductive-invariant.pdf
http://lamport.azurewebsites.net/tla/inductive-invariant.pdf
https://github.com/dranov/protocol-bugs-list
https://github.com/dranov/protocol-bugs-list

BIRZIN, A., POSS, R., BARDEA, P., RANADE, A.,
DARNELL, B., GRUNEIR, B., JAFFRAY, J., ZHANG,
L., AND MATTIS, P. CockroachDB: The Resilient Geo-
Distributed SQL Database. In Proceedings of the 2020
ACM SIGMOD International Conference on Manage-
ment of Data (2020), SIGMOD ’20, Association for
Computing Machinery, p. 1493–1509.

[42] TAUBE, M., LOSA, G., MCMILLAN, K. L., PADON,
O., SAGIV, M., SHOHAM, S., WILCOX, J. R., AND
WOOS, D. Modularity for decidability of deductive
verification with applications to distributed systems. In
Proceedings of the 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation
(2018), pp. 662–677.

[43] TIP, F. A survey of program slicing techniques. J.
Program. Lang. 3 (1994).

[44] VANLIGHTLY, J. raft-tlaplus: A TLA+ specification
of the Raft distributed consensus algorithm. https:
//github.com/Vanlightly/raft-tlaplus/blob/
main/specifications/standard-raft/Raft.tla,
2023. GitHub repository.

[45] WILCOX, J. R., WOOS, D., PANCHEKHA, P., TAT-
LOCK, Z., WANG, X., ERNST, M. D., AND ANDER-
SON, T. E. Verdi: a framework for implementing and
formally verifying distributed systems. In Proceedings
of the 36th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, Portland,
OR, USA, June 15-17, 2015 (2015), D. Grove and S. M.
Blackburn, Eds., ACM, pp. 357–368.

[46] WOOS, D., WILCOX, J. R., ANTON, S., TATLOCK,
Z., ERNST, M. D., AND ANDERSON, T. Planning
for Change in a Formal Verification of the Raft Con-
sensus Protocol. In Proceedings of the 5th ACM SIG-
PLAN Conference on Certified Programs and Proofs
(2016), CPP 2016, Association for Computing Machin-
ery, p. 154–165.

[47] YAO, J., TAO, R., GU, R., AND NIEH, J. DuoAI: Fast,
Automated Inference of Inductive Invariants for Veri-
fying Distributed Protocols. In 16th USENIX Sympo-
sium on Operating Systems Design and Implementa-
tion, OSDI 2022, Carlsbad, CA, USA, July 11-13, 2022
(2022), M. K. Aguilera and H. Weatherspoon, Eds.,
USENIX Association, pp. 485–501.

[48] YAO, J., TAO, R., GU, R., NIEH, J., JANA, S., AND
RYAN, G. DistAI: Data-Driven Automated Invariant
Learning for Distributed Protocols. In 15th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 21) (July 2021), USENIX Association,
pp. 405–421.

[49] YU, Y., MANOLIOS, P., AND LAMPORT, L. Model
Checking TLA+ Specifications. In Correct Hardware
Design and Verification Methods (Berlin, Heidelberg,
1999), L. Pierre and T. Kropf, Eds., Springer Berlin Hei-
delberg, pp. 54–66.

[50] ZHANG, T. N., HANCE, T., KAPRITSOS, M., CHAJED,
T., AND PARNO, B. Inductive invariants that spark joy:
Using invariant taxonomies to streamline distributed pro-
tocol proofs. In 18th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 24) (Santa
Clara, CA, July 2024), USENIX Association, pp. 837–
853.

15

https://github.com/Vanlightly/raft-tlaplus/blob/main/specifications/standard-raft/Raft.tla
https://github.com/Vanlightly/raft-tlaplus/blob/main/specifications/standard-raft/Raft.tla
https://github.com/Vanlightly/raft-tlaplus/blob/main/specifications/standard-raft/Raft.tla

	Introduction
	Overview
	Inductive Proof Graphs
	Decomposing Inductive Invariants
	Inductive Proof Graph Validity
	Note on Cycles and Subgraphs

	Local Variable Slices

	Synthesizing Inductive Proof Graphs
	Our Synthesis Algorithm
	Local Lemma Synthesis with Slicing

	Evaluation
	Detailed Case Study: Raft Consensus Protocol

	Related Work
	Conclusions and Future Work

