Scalable, Interpretable
Protocol Verification by
Inductive Proof Slicing

/

William Schultz®, Eddy Ashton', Heidi HowardT. Stavros Tripakis’
Northeastern University”

Microsoft Research Cambridget

New England Systems Verification Day 2024

Plethora of new distributed protocol verification techniques in past several years.

IC3PO [NFM21,FMCAD21] FOL-ICS3 [pLDI20]

SWISS [NsDI21) endive [FMCcAD22]

DistAl [0sDi21, 0SDI22)

Core task: inductive invariant synthesis.

For tackling larger protocol verification tasks, we want both
better scalability and interpretability.

Our Work

(VoteMsgImpliesVote@ v

1. Inductive Proof Graph ;

SendVote | v/
Vitice={voteMsg, voteRequestMsg, voted}

A 4 |R|=21,887/110,464 (5x reduction)
(VoteMsgsUnique v (VoteRecvdI mpliesVoteMsg) v
[RecvVote | v
Vstice= {voteMsg, votes}
v |R|=343/110,464 (322x reduction)

NodesVoteOnce | v/ (LeaderHasQuorum) v

BecomeLeader | v

Vstice= {leader,votes}
Y |R|=94/110,464 (1,175x reduction)

UniqueLeaders| ./

LeadersDecide | v

v
Vilice= {leader, decided}

|R|=10/110,464 (11,046x reduction)

NoConflictingValues | v/

/
2 Inductive Proof Sllcmg BecomiLeanZ;:{lead?wIt;?cal|zed Slicing + Lemma Synthesis

(LeadersDecide v UniqueLeaders)

Decide | v/
l Vitice={leader, decided}

NoConflictingValues | ./

Inductive Proof Graph

Running example: Simple consensus protocol.

CONSTANTS Node, Value, Quorum

VARIABLES
voteRequest Msg,
voted,

6 state voteMsg,
. tes,
variables o

leader,

decided

Init = Initial states.

A voteRequestMsg = {}

A voted = [i € Node + False]
A voteMsg = {}

A votes = [i € Node — {}]

A leader = [i € Node +— False]
A decided = [i € Node — {}]

Next = Transition relation.
di,j € Node :
dov € Value :
340 € Quorum :

V SendRequestVote(i, j)
5 concurrent V SendVote(i, j)

] V RecvVote(i, j)
actions. V BecomeLeader (i, Q)

V Decide(i, v)

Protocol actions.

SendRequestVote(src, dst) =
A voteRequestMsqg’ = voteRequestMsg U {(src, dst)}

SendVote(src, dst) =
A —woted|src]
A (dst, src) € voteRequestMsg
A voteMsg’ = voteMsqg U {(src,dst)}
A voted’[src] := True
A voteRequestMsqg’ = voteRequestMsg \ {(src,dst)}

RecvVote(n, sender) =
A (sender,n) € voteMsg

A votes’ [n] := votes[n] U {sender}

BecomeLeader(n, Q) =
A Q C votes|[n]
A leader’[n] := True

Decide(n, v) =
A leader|[n]
A decided|[n] = {}
A decided’ [n] = {v}

Safety property.

NoConflictingValues =
Vni,na € Node,v1,v9 € Value :
(v1 € decided|n1] A vy € decided|n2]) = (v1 = v2)

Inductive Proof Graph

(VoteMsgImpliesVoted) v

v

SendVote | /
Ind £ Inductive invariant. | Vaemlootebsg coteRequesthtsg voted)
A NoConflictingValues (Safety) (VoteMsgsUnique) (VoteRecvdimpliesVoteMsg)
A UniqueLeaders Inductive RecWote y
A LeaderHasQuorum Decomposition S oo il I
A LeadersDecide (NodesVoteOnc% ;aderHasQuorum) Y
A NodesVoteOnce
BecomeLeader v

Vilice= {leader,votes}

A VoteRecordedImpliesVoteMsg Ricoasder DOLES) ion

A VoteMsgsUnique (LeaderSDmQ AgmqueLeaders Y
A VoteMsgImpliesNodeVoted

‘Decide v
l Velice= {leader,decided}

|R| 10/110,464 (11,046x reduction)

(Safet y) \NoConﬂzctmgValues\ V4

Monolithic inductive invariant for a
simple consensus protocol.

(conjunction of lemma invariants) Corresponding inductive proof graph for Ind.

Inductive Invariant Synthesis
by Inductive Proof Slicing

e Syntax-guided inductive invariant synthesis

algorithm built on the inductive proof graph.

 Compute variable slices at local graph
nodes, enabling synthesis acceleration via:

« Grammar slicing

» State slicing

/

6 protocol state variables

{voted, voteMsg, votes, voteRequestMsg, leader, decided }

(VoteMsgI mpliesVotea) V4

v

SendVote

v

l Vsiice={voteMsg, voteRequestMsg, voted}

|R|=21,887/110,464 (5x reduction)

(VoteMsgsUn iqq (VoteRecvdI mpliesVoteMsg) V4

RecvVote | v/

Vstice= {voteMsg, votes}
|R|=343/110,464 (322x reduction)

(NodesVoteOnce v LeaderHasQuorum) V4
BecomeLeader v4

Vilice= {leader,votes}
|R|=94/110,464 (1,175x reduction)

(LeadersDecui/‘ AgmqueLeaders V4

Decide | V/

Velice {leader, decided}
|R|=10/110,464 (11,046x reduction)

(Safety) |NoConflictingValues | /

Inductive Invariant Synthesis
by Inductive Proof Slicing

/

* (Construct the inductive proof graph
incrementally, backwards from safety

property.

BecomeLeader
l Vstice={leader,votes}

Ag]niqueLeaders)
,
/\ Decide

¢ Vitice={leader, decided}

NoConflictingValues

In-progress inductive proof graph.

Inductive Invariant Synthesis
by Inductive Proof Slicing

/

Q Local synthesis of
inductive support lemmas with slicing.

* (Construct the inductive proof graph
incrementally, backwards from safety

property.

(2/6 state variables in slice)

BecomeLeader
l Vstice={leader,votes}

Ag]niqueLeaders)
,
/\ Decide

¢ Vitice={leader, decided}

NoConflictingValues

In-progress inductive proof graph.

Inductive Invariant Synthesis
by Inductive Proof Slicing

n Local synthesis of
inductive support lemmas with slicing.

» (Construct the inductive proof graph (2/6 state variables in slice)

incrementally, backwards from safety
property.

,
/\ BecomeLeader

(LeadersDecide V4

l Vstice={leader,votes}

A@]niqueLeaders)

Decide

v

l Vitice={leader, decided}

NoConflictingValues | ./

In-progress inductive proof graph.

Inductive Invariant Synthesis
by Inductive Proof Slicing

n Local synthesis of
inductive support lemmas with slicing.

» (Construct the inductive proof graph (2/6 state variables in slice)

incrementally, backwards from safety
property.

,
/\ BecomeLeader

(LeadersDecide V4

(LeaderHasQuorum) V4

x>

Viice={leader,votes}

Yy

‘gfniqueLeaders)

Decide

v

¢ Viice={leader,decided}

NoConflictingValues | ./

In-progress inductive proof graph.

Inductive Invariant Synthesis
by Inductive Proof Slicing

n Local synthesis of
inductive support lemmas with slicing.
* (Construct the inductive proof graph (2/6 state variables in slice)
incrementally, backwards from safety

property.

/\’ RecvVote
* Vsiice={voteMsg, votes}

(NodesVoteOnce) (Leader HasQuorum) v
e

BecomeLeader | v/

l Viiice={leader,votes}

(LeadersDecide v ‘gfniqueLeader s| v/

Decide | v/
l Vstice={leader, decided}

NoConflictingValues | ./

In-progress inductive proof graph.

Initial Evaluation
Scalability

HandleRequestVoteResponse UpdateTerm RequestVote

{ootRptmttt} {tRpth‘ptrjtt votedFor}

=

RequestVote [UpdateTerm| ‘H andleRequestVoteResponse ’

{term, state,vote d?)'t\}{t m, sta t otedFor,votes} {vote S, term, state,votedFor,votes}
'RequeStVote'\ In026505 ,
{voteResps, termy, state, votes}

RequestVote HandleRequestVoteRequest
, Stafe, votes} {voteRegs, voteResps, tefm, state, votedFor, votes}

AsyncRaft - large, asynchronous model of
Raft consensus protocol.

~600 lines of TLA+ code in spec.

HandleRequestVoteResponse
{voteResps, m state, votes}

| BecomeLeader H andleRequestVoteResponse
{tmtt {voteRes, tmttt}

Synthesized inductive invariant for @
election safety property in ~3 hours.

> 50 million reachable states in small
finite model (N=3 processes).

\BecomeLeader |
{term,s tt otes}

Initial Evaluation
Interpretability

Incomplete grammar leading to
global inference failure.

HandleRequestVoteRequest

{voteRegqs, votes|term,votedFor}

Clnozzn >

HandleRequestVoteRequest

{voteRegs, voteResps, term, state, voted For,ve

pd

Failures localized to graph
node and variable slice

HandleRequestVoteResponse

{voteResps, tfm, state,votes} {voieR}p{term, state,votes}

RequestVote

RequestVote| |HandleRequestVoteResponse

{term, state, vote {voteResps, terlrn, state,votes}
(Inoss)-

BecomeLeader |HandleRequestVoteResponse

{term, state}s&}‘ {vot‘e?p(term, state,votes}

Qe

Y

BecomelLeader

{term, stqte, votes}
\d

V,

Thanks!

Work under submission, preprint available.

