
Modular Verification and
Permissiveness of
Distributed Transactions

Will Schultz
Staff Research Engineer @ MongoDB

Agenda
● Distributed Transactions in MongoDB

● Modular Formal Specification

● Checking Isolation & Permissiveness

● Model-based Verification

MongoDB Architecture
Database is consists of collections,
each a set of documents.

Replica sets for fault tolerance.

Sharding for horizontal scalability by
logical collection partitioning.

Local WiredTiger instance:
snapshot-isolated key-value
storage.

Distributed Transactions in MongoDB
Original implementation for sharded clusters in v4.2.

Implements multi-document transactions at a maximum of snapshot
isolation, using single replica set transaction machinery at each shard.

Read concern levels in MongoDB defines durability/consistency guarantees.

• readConcern: “snapshot” (snapshot isolation)

• readConcern: “local” (read committed)

Distributed Transactions in MongoDB
Clients send transaction operations
to router, which establishes global
read timestamp.

Operations forwarded to shards until
commit (or must abort).

Distributed Transactions in MongoDB
Clients send transaction operations
to router, which establishes global
read timestamp.

Operations forwarded to shards until
commit (or must abort).

Read(t=0)

Distributed Transactions in MongoDB
Clients send transaction operations
to router, which establishes global
read timestamp.

Operations forwarded to shards until
commit (or must abort).

Coordinator prepares transaction at each shard,
receiving prepare timestamp at each.

Prepare timestamps then used using to compute
global commit timestamp.

Coordinator

Read(t=0)

Distributed Transactions in MongoDB
Clients send transaction operations
to router, which establishes global
read timestamp.

Operations forwarded to shards until
commit (or must abort).

Prepare(t=1)

Coordinator prepares transaction at each shard,
receiving prepare timestamp at each.

Prepare timestamps then used using to compute
global commit timestamp.

Coordinator

Read(t=0)

Distributed Transactions in MongoDB
Clients send transaction operations
to router, which establishes global
read timestamp.

Operations forwarded to shards until
commit (or must abort).

Prepare(t=1) Prepare(t=2)

Coordinator prepares transaction at each shard,
receiving prepare timestamp at each.

Prepare timestamps then used using to compute
global commit timestamp.

Coordinator

Read(t=0)

Distributed Transactions in MongoDB
Clients send transaction operations
to router, which establishes global
read timestamp.

Operations forwarded to shards until
commit (or must abort).

Prepare(t=1) Prepare(t=2)

Commit(t=3)

Coordinator prepares transaction at each shard,
receiving prepare timestamp at each.

Prepare timestamps then used using to compute
global commit timestamp.

Coordinator

Read(t=0)

Distributed Transactions in MongoDB
Clients send transaction operations
to router, which establishes global
read timestamp.

Operations forwarded to shards until
commit (or must abort).

Prepare(t=1) Prepare(t=2)

Commit(t=3) Commit(t=3)

Coordinator prepares transaction at each shard,
receiving prepare timestamp at each.

Prepare timestamps then used using to compute
global commit timestamp.

Coordinator

Read(t=0)

Distributed Transactions in MongoDB
Clients send transaction operations
to router, which establishes global
read timestamp.

Operations forwarded to shards until
commit (or must abort).

Prepare(t=1) Prepare(t=2)

Commit(t=3) Commit(t=3)

Coordinator prepares transaction at each shard,
receiving prepare timestamp at each.

Prepare timestamps then used using to compute
global commit timestamp.

*Some 2PC bypass
optimizations for read-
only, single write shard
transactions, etc.

Coordinator

Read(t=0)

Modular Protocol Specification
Formal, abstract model of our protocol at a layer above the code.

We use TLA+, a formal language based on first-order logic for describing
any algorithm/system as a discrete transition system.

2 basic components for system definition in TLA+:

- What are the set of initial states of your system? (Init)
- How can your system transition from one state to another? (Next)

 Init ≜ x = 0

Next ≜
∨ ∧ x ≥ 0

∧ x′ = (x + 1) mod 3
∨ ∧ x ∈ {1, − 1}

∧ x′ = − x

x = 0

x = 1

x = 2

x = − 1

Modular Protocol Specification

Modular Protocol Specification

Constant parameters:

- : set of shards (e.g. {s1, s2})

- : set of routers (e.g. {r1})

- : Set of possible keys (e.g. {k1, k2})

- : set of transaction ids (e.g. {t1,t2})

- : global read concern (“local”/”snapshot”).

Shard
Router
Key
TxId
RC

Specifying our Transactions Protocol

Specification is composed of 2

modules:

- MultiShardTxn: models the

sharded transaction protocol

(+)

- Storage: models the underlying

replication/storage layer at each

shard

Shard Router

Specifying our Transactions Protocol

Router

Init ≜
 Λ rtxn = [r ∈ Router |-> [t ∈ TxId |-> 0]]
 Λ rParticipants = [r ∈ Router |-> [t ∈ TxId |-> <<>>]]
 Λ rTxnReadTs = [r ∈ Router |-> [t ∈ TxId |-> NoValue]]
 Λ rInCommit = [r ∈ Router |-> [t ∈ TxId |-> FALSE]]

 Λ shardTxnReqs = [s ∈ Shard |-> [t ∈ TxId |-> <<>>]]
 Λ shardTxns = [s ∈ Shard |-> {}]
 Λ shardPreparedTxns = [s ∈ Shard |-> {}]
 Λ aborted = [s ∈ Shard |-> [t ∈ TxId |-> FALSE]]
 Λ coordInfo = [s ∈ Shard |-> [t ∈ TxId |-> [self |-> FALSE, …]]]
 Λ coordCommitVotes = [s ∈ Shard |-> [t ∈ TxId |-> {}]]
 Λ shardOps = [s ∈ Shard |-> [t ∈ TxId |-> <<>>]]

 Λ msgsPrepare = {}
 Λ msgsVoteCommit = {}
 Λ msgsAbort = {}
 Λ msgsCommit = {}

 Λ catalog ∈ [Keys -> Shard]
 Λ ops = [s ∈ TxId |-> <<>>]

Shard

Network

Global

Initial States

(Static mapping from keys to shards)

(Stores global transaction histories for isolation checking)

Specifying our Transactions Protocol

Storage

Init ≜
 Λ log = [s ∈ Shard |-> <<>>]
 Λ commitIndex = [s ∈ Shard |-> 0]
 Λ txnSnapshots = [s ∈ Shard |->
 [t ∈ TxId |-> Nil]]
 Λ nextTs = [s ∈ Shard |-> 1]

State Variables & Initial States

Specifying Isolation
At readConcern: "snapshot", MongoDB transactions in sharded cluster should
provide snapshot isolation.

Check isolation using client-centric isolation model of Crooks [PODC17].

[Adya00] 2000. Generalized Isolation Level Definitions. In Proceedings of the 16th International Conference on Data Engineering (ICDE '00). IEEE Computer Society,
USA, 67.

[PODC17] Natacha Crooks, Youer Pu, Lorenzo Alvisi, and Allen Clement. 2017. Seeing is Believing: A Client-Centric Specification of Database Isolation. In Proceedings of
the ACM Symposium on Principles of Distributed Computing (PODC '17). Association for Computing Machinery, New York, NY, USA, 73–82. https://doi.org/
10.1145/3087801.3087802

https://dl.acm.org/doi/10.1145/3087801.3087802
https://doi.org/10.1145/3087801.3087802
https://doi.org/10.1145/3087801.3087802

Specifying Isolation
Given a set of transactions T, we say that it satisfies an isolation level if there
exists an execution such that every transaction passes a commit test.

Commit tests are defined for each isolation level.

Specifying Isolation
Given a set of transactions T, we say that it satisfies an isolation level if there
exists an execution such that every transaction passes a commit test.

Commit tests are defined for each isolation level.

Exists an
execution

Commit test holds for
every transaction

Set of transactions

Satisfies isolation level iff

Specifying Isolation

A transaction is a sequence of read/write ops, and an execution is a sequence
of transactions along with the states generated by their execution.

Read states of a transaction operation are those in its past it
could have read from.

s0 s1T1 T2 s2 T3 s3 T4 s4

States of execution

r(k1, t1)w(k1, t1)

Read state for T3

Complete
read
state

No conflicting writes

Specifying Isolation
Snapshot isolation commit test:

Exists some state
in your past.

All reads in T can
read from this state.

No intervening transaction
wrote a key that T wrote to.

s0 s1T1 T2 s2 T3 s3 T s4

Complete read state for T

InitialState == [k \in Keys |-> NoValue]

SnapshotIsolation(InitialState, Range(ops))

Specifying Isolation
When a transaction commits at a shard, record ops into global history (ops).
Then pass ops history into state-based isolation checker:

ops = (
 t1 :>
 << [op |-> "write", key |-> k1, value |-> t1],
 [op |-> "write", key |-> k2, value |-> t1] >> @@
 t2 :>
 << [op |-> "read", key |-> k1, value |-> t1],
 [op |-> "read", key |-> k2, value |-> NoValue] >>)

(No complete
state for t2)

Specifying Isolation

ops = (
 t1 :>
 << [op |-> "write", key |-> k1, value |-> t1],
 [op |-> "write", key |-> k2, value |-> t1] >> @@
 t2 :>
 << [op |-> "read", key |-> k1, value |-> t1],
 [op |-> "read", key |-> k2, value |-> t1] >>)

✓

InitialState == [k \in Keys |-> NoValue]

SnapshotIsolation(InitialState, Range(ops))

When a transaction commits at a shard, record ops into global history (ops).
Then pass ops history into state-based isolation checker:

Specifying Isolation
When a transaction commits at a shard, record ops into global history (ops). Then pass ops
history into state-based isolation checker:

ops = (
 t1 :>
 << [op |-> "read", key |-> k1, value |-> NoValue],
 [op |-> "read", key |-> k2, value |-> NoValue]
 [op |-> "write", key |-> k1, value |-> t1] >> @@
 t2 :>
 << [op |-> "read", key |-> k1, value |-> NoValue],
 [op |-> "read", key |-> k2, value |-> NoValue]
 [op |-> "write", key |-> k1, value |-> t2] >>)

InitialState == [k \in Keys |-> NoValue]

SnapshotIsolation(InitialState, Range(ops))
(1 complete state for

t1,t2, but with conflict)

Model Checking Isolation Guarantees
Using TLC explicit state model checker: exhaustively explores all reachable
behaviors of given protocol specification, while checking safety and/or liveness
properties.

Configure model with finite protocol parameters/bounds for termination (e.g. 2
shards, 2 transactions, etc.). Small models typically effective.

Model Checking Isolation Guarantees
● , ,

,

● MaxStmts=2

● RC = “snapshot”

● INVARIANT SnapshotIsolation

Shard = {s1, s2} Router = {r1}
TxId = {t1, t2} Key = {k1, k2} Depth = 35

8,408,701 distinct states (<10 minutes) ✓

● , ,

,

● MaxStmts=2

● RC = “local”

● INVARIANT ReadCommitted

Shard = {s1, s2} Router = {r1}
TxId = {t1, t2} Key = {k1, k2} Depth = 35

1,950,582 distinct states (<10 minutes) ✓

Permissiveness
Beyond isolation, can also consider a notion of permissiveness [1].

For given transactions protocol how much concurrency is allowed within a given
isolation level.

ℋR / ℋI
Histories contained in

isolation level
definition.

Histories
permitted over all

protocol
behaviors.

[1] Rachid Guerraoui, Thomas A. Henzinger, and Vasu Singh. 2008. Permissiveness in Transactional Memories. In Proceedings of the 22nd international symposium on
Distributed Computing (DISC '08). Springer-Verlag, Berlin, Heidelberg, 305–319. https://doi.org/10.1007/978-3-540-87779-0_21

Permissiveness

Checking permissiveness for a given model .

Consider its set of reachable states , and the

projection of all possible schedules over any reachable

behavior, .

Can compute this with finite model checker and
compare permissiveness between protocols.

M

𝒮

𝒮ops

𝒮

𝒮ops

Permissiveness

Read Concern Write Conflicts Prepare Conflicts Permissiveness

SI definition - - 1.0

“snapshot” Yes Yes 0.81

Read Concern Write Conflicts Prepare Conflicts Permissiveness

RC definition - - 1.0

“local” No No 0.792

“local” Yes No 0.790

“local” Yes Yes 0.76

Snapshot
Isolation

Read
Committed

● , ,

,

● MaxStmts=2

Shard = {s1, s2} Router = {r1}
TxId = {t1, t2} Key = {k1, k2}

MongoDB default

Permissiveness

Read Concern Write Conflicts Prepare Conflicts Permissiveness

SI definition - - 1.0

“snapshot” Yes Yes 0.81

Read Concern Write Conflicts Prepare Conflicts Permissiveness

RC definition - - 1.0

“local” No No 0.792

“local” Yes No 0.790

“local” Yes Yes 0.76

Snapshot
Isolation

Read
Committed

● , ,

,

● MaxStmts=2

Shard = {s1, s2} Router = {r1}
TxId = {t1, t2} Key = {k1, k2}

MongoDB default

Permissiveness
Schedule prevented by prepare conflict blocking, permitted under read committed.

 t1 : << [op |-> "read", key |-> k2, value |-> NoValue],
 [op |-> "read", key |-> k2, value |-> t2]>> @@

 t2 : << [op |-> "write", key |-> k2, value |-> t2]>>

(Non-repeatable read)

Read Concern Write Conflicts Prepare Conflicts Permissiveness

RC definition - - 1.0
“local” No No 0.792
“local” Yes No 0.790
“local” Yes Yes 0.76

Read
Committed

MongoDB default

Model-Based Verification
Formally connect our high level protocol specification to lower level storage layer.

Model-Based Verification
Formally connect our high level protocol specification to lower level storage layer.

Conformance

> 100,000 lines
C Code

Modular Specification
Use model to automatically generate test
cases for checking conformance of
WiredTiger implementation to abstraction
to model.

Model-Based Verification

[Action 1]: StartTransaction(readTs=1, rc="snapshot", ignorePrepare="false", n=n, tid=t1) res:OK
[Action 2]: StartTransaction(readTs=3, rc="snapshot", ignorePrepare="false", n=n, tid=t2) res:OK
[Action 3]: TransactionWrite(v=t2, k=k1, n=n, tid=t2) res:OK
[Action 4]: TransactionWrite(v=t2, k=k2, n=n, tid=t2) res:OK
[Action 5]: TransactionRead(v=t2, k=k2, n=n, tid=t2) res:OK
[Action 6]: AbortTransaction(n=n, tid=t2) res:OK
[Action 7]: TransactionWrite(v=t1, k=k1, n=n, tid=t1) res:OK
[Action 8]: TransactionWrite(v=t1, k=k2, n=n, tid=t1) res:OK
[Action 9]: TransactionRead(v=t1, k=k1, n=n, tid=t1) res:OK
[Action 10]: TransactionRead(v=t1, k=k2, n=n, tid=t1) res:OK
[Action 11]: TransactionRemove(k=k2, n=n, tid=t1) res:OK
[Action 12]: PrepareTransaction(prepareTs=3, n=n, tid=t1) res:OK
[Action 13]: CommitPreparedTransaction(durableTs=3, n=n, tid=t1, commitTs=3) res:OK

Behavior produced from TLC model checker (e.g. path in state graph).

Model-Based Verification

Model-Based Verification

Generate and run
test cases against

WiredTiger

Takeaways & Future Work
● Leverage modular formal models for both high level algorithm correctness and

formalizing and checking lower level module interfaces
● Permissiveness checking of transactions enables finer-grained comparison of

concurrency allowance for a given protocol: guide towards optimization opportunities for
a transactions protocol

Future Work
● Analyze permissiveness of broader range of existing protocols from literature
● Cutoff bounds for model checking transactional protocols
● Automatic checking of application level consistency/isolation guarantees

Find the transactions model here:

github.com/muratdem/MDBTLA/tree/main/MultiShardTxn

https://github.com/muratdem/MDBTLA/tree/main/MultiShardTxn

Thanks!

